DebugAgent: Efficient and Interpretable Error Slice Discovery for Comprehensive Model Debugging
- URL: http://arxiv.org/abs/2501.16751v1
- Date: Tue, 28 Jan 2025 07:08:20 GMT
- Title: DebugAgent: Efficient and Interpretable Error Slice Discovery for Comprehensive Model Debugging
- Authors: Muxi Chen, Chenchen Zhao, Qiang Xu,
- Abstract summary: We introduce DebugAgent, an automated framework for error slice discovery and model repair.
DebugAgent first generates task-specific visual attributes to highlight instances prone to errors.
It then employs an efficient slice enumeration algorithm to systematically identify error slices.
- Score: 9.209104721371228
- License:
- Abstract: Despite the significant success of deep learning models in computer vision, they often exhibit systematic failures on specific data subsets, known as error slices. Identifying and mitigating these error slices is crucial to enhancing model robustness and reliability in real-world scenarios. In this paper, we introduce DebugAgent, an automated framework for error slice discovery and model repair. DebugAgent first generates task-specific visual attributes to highlight instances prone to errors through an interpretable and structured process. It then employs an efficient slice enumeration algorithm to systematically identify error slices, overcoming the combinatorial challenges that arise during slice exploration. Additionally, DebugAgent extends its capabilities by predicting error slices beyond the validation set, addressing a key limitation of prior approaches. Extensive experiments across multiple domains, including image classification, pose estimation, and object detection - show that DebugAgent not only improves the coherence and precision of identified error slices but also significantly enhances the model repair capabilities.
Related papers
- Automatic Discovery and Assessment of Interpretable Systematic Errors in Semantic Segmentation [0.5242869847419834]
This paper presents a novel method for discovering systematic errors in segmentation models.
We leverage multimodal foundation models to retrieve errors and use conceptual linkage along with erroneous nature to study the systematic nature of these errors.
Our work opens up the avenue to model analysis and intervention that have so far been underexplored in semantic segmentation.
arXiv Detail & Related papers (2024-11-16T17:31:37Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
We propose DECIDER, a novel approach that leverages priors from large language models (LLMs) and vision-language models (VLMs) to detect failures in image models.
DECIDER consistently achieves state-of-the-art failure detection performance, significantly outperforming baselines in terms of the overall Matthews correlation coefficient.
arXiv Detail & Related papers (2024-08-01T07:08:11Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
slice detection models (SDM) automatically identify underperforming groups of datapoints.
This paper proposes a benchmark named "Discover, Explain, improve (DEIM)" for classification NLP tasks.
Our evaluation shows that Edisa can accurately select error-prone datapoints with informative semantic features.
arXiv Detail & Related papers (2022-11-08T19:00:00Z) - ODDObjects: A Framework for Multiclass Unsupervised Anomaly Detection on
Masked Objects [0.0]
ODDObjects is designed to detect anomalies of various categories using unsupervised autoencoders trained on COCO-style datasets.
The framework extends previous work on anomaly detection with autoencoders, comparing state-of-the-art models trained on object recognition datasets.
arXiv Detail & Related papers (2021-04-26T01:13:28Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Adaptive Object Detection with Dual Multi-Label Prediction [78.69064917947624]
We propose a novel end-to-end unsupervised deep domain adaptation model for adaptive object detection.
The model exploits multi-label prediction to reveal the object category information in each image.
We introduce a prediction consistency regularization mechanism to assist object detection.
arXiv Detail & Related papers (2020-03-29T04:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.