Designing Minimalistic Variational Quantum Ansatz Inspired by Algorithmic Cooling
- URL: http://arxiv.org/abs/2501.16776v1
- Date: Tue, 28 Jan 2025 07:59:33 GMT
- Title: Designing Minimalistic Variational Quantum Ansatz Inspired by Algorithmic Cooling
- Authors: Soyoung Shin, Ha Eum Kim, Hyeonjun Yeo, Kabgyun Jeong, Wonho Jhe, Jaewan Kim,
- Abstract summary: This study introduces a novel minimalistic variational quantum ansatz inspired by algorithmic cooling principles.
The proposed Heat Exchange algorithmic cooling ansatz (HE ansatz) facilitates efficient population redistribution without requiring bath resets.
We also proposed a new variational algorithm that utilize HE ansatz to compute the ground state of impure dissipative-system variational quantum eigensolver.
- Score: 0.0
- License:
- Abstract: This study introduces a novel minimalistic variational quantum ansatz inspired by algorithmic cooling principles. The proposed Heat Exchange algorithmic cooling ansatz (HE ansatz) facilitates efficient population redistribution without requiring bath resets, simplifying implementation on noisy intermediate-scale quantum (NISQ) devices. The HE ansatz achieves superior approximation ratios with the complete network \textsc{Maxcut} optimization problem compared to the conventional Hardware efficient and QAOA ansatz. We also proposed a new variational algorithm that utilize HE ansatz to compute the ground state of impure dissipative-system variational quantum eigensolver (dVQE) which achieved a sub-$1\%$ error in ground-state energy calculations of the 1D Heisenberg chain with impurity and successfully simulates the edge effect of impure spin chain, highlighting its potential for applications in quantum many-body physics. These results underscore the compatibility of the ansatz with hardware-efficient implementations, offering a scalable approach for solving complex quantum problems in disordered and open quantum systems.
Related papers
- Projective Quantum Eigensolver with Generalized Operators [0.0]
We develop a methodology for determining the generalized operators in terms of a closed form residual equations in the PQE framework.
With the application on several molecular systems, we have demonstrated our ansatz achieves similar accuracy to the (disentangled) UCC with singles, doubles and triples.
arXiv Detail & Related papers (2024-10-21T15:40:22Z) - Circuit-Efficient Qubit-Excitation-based Variational Quantum Eigensolver [7.865137519552981]
We present a circuit-efficient implementation of two-body Qubit-Excitation-Based (QEB) operator for building shallow-circuit wave function Ansatze.
This work shows great promise for quantum simulations of electronic structures, leading to improved performance on current quantum hardware.
arXiv Detail & Related papers (2024-06-17T16:16:20Z) - Variational quantum eigensolver for closed-shell molecules with
non-bosonic corrections [6.3235499003745455]
We introduce a simple correction scheme in the electron correlation model approximated by the geometrical mean of the bosonic terms.
We find our non-bosonic correction method reaches reliable quantum chemistry simulations at least for the tested systems.
arXiv Detail & Related papers (2023-10-11T16:47:45Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Improved accuracy on noisy devices by non-unitary Variational Quantum
Eigensolver for chemistry applications [0.0]
We propose a modification of the Variational Quantum Eigensolver algorithm for electronic structure optimization using quantum computers.
A non-unitary operator is combined with the original system Hamiltonian leading to a new variational problem with a simplified wavefunction Ansatz.
arXiv Detail & Related papers (2021-01-22T20:17:37Z) - An efficient adaptive variational quantum solver of the Schrodinger
equation based on reduced density matrices [8.24048506727803]
We present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE.
This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware.
arXiv Detail & Related papers (2020-12-13T12:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.