論文の概要: Data-Driven vs Traditional Approaches to Power Transformer's Top-Oil Temperature Estimation
- arxiv url: http://arxiv.org/abs/2501.16831v1
- Date: Tue, 28 Jan 2025 10:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:00.510714
- Title: Data-Driven vs Traditional Approaches to Power Transformer's Top-Oil Temperature Estimation
- Title(参考訳): 電力変換器の最高温度推定へのデータ駆動と従来手法
- Authors: Francis Tembo, Federica Bragone, Tor Laneryd, Matthieu Barreau, Kateryna Morozovska,
- Abstract要約: 電力変圧器の温度モニタリングは、長期運用の維持に不可欠である。
例えば、IEC 60076-7とIEEEの標準で提示されたモデルは、トップオイルとホットスポットの温度を計算して温度をモニターする。
本研究は, 過去の測定値からトップオイル温度を推定する代替手法の発見に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Power transformers are subjected to electrical currents and temperature fluctuations that, if not properly controlled, can lead to major deterioration of their insulation system. Therefore, monitoring the temperature of a power transformer is fundamental to ensure a long-term operational life. Models presented in the IEC 60076-7 and IEEE standards, for example, monitor the temperature by calculating the top-oil and the hot-spot temperatures. However, these models are not very accurate and rely on the power transformers' properties. This paper focuses on finding an alternative method to predict the top-oil temperatures given previous measurements. Given the large quantities of data available, machine learning methods for time series forecasting are analyzed and compared to the real measurements and the corresponding prediction of the IEC standard. The methods tested are Artificial Neural Networks (ANNs), Time-series Dense Encoder (TiDE), and Temporal Convolutional Networks (TCN) using different combinations of historical measurements. Each of these methods outperformed the IEC 60076-7 model and they are extended to estimate the temperature rise over ambient. To enhance prediction reliability, we explore the application of quantile regression to construct prediction intervals for the expected top-oil temperature ranges. The best-performing model successfully estimates conditional quantiles that provide sufficient coverage.
- Abstract(参考訳): 電力変換器は電流と温度変動を受けており、適切に制御されていない場合、絶縁システムの大幅な劣化を引き起こす可能性がある。
したがって、電力変圧器の温度をモニタリングすることは、長期運用の維持に不可欠である。
例えば、IEC 60076-7とIEEEの標準で提示されたモデルは、トップオイルとホットスポットの温度を計算して温度をモニターする。
しかし、これらのモデルはそれほど正確ではなく、パワートランスの特性に依存している。
本研究は, 過去の測定値からトップオイル温度を推定する代替手法の発見に焦点をあてる。
利用可能な大量のデータから時系列予測のための機械学習手法を解析し、実測値とICC標準の対応する予測値と比較する。
テスト対象は、ANN(Artificial Neural Networks)、TiDE(Time-Series Dense Encoder)、TCN(Temporal Convolutional Networks)である。
これらの手法はIEC 60076-7モデルよりも優れており、周囲の温度上昇を推定するために拡張されている。
予測信頼性を高めるために,予測温度範囲の予測間隔を構築するために,量子レグレッション(quantile regression)の適用について検討する。
最高の性能モデルは十分なカバレッジを提供する条件付き量子化をうまく推定する。
関連論文リスト
- Calibrating Language Models with Adaptive Temperature Scaling [58.056023173579625]
本稿では,各トークンの温度スケーリングパラメータを予測するポストホックキャリブレーション法であるAdaptive Temperature Scaling (ATS)を紹介する。
ATSは、以前のキャリブレーション法と比較して、3つの下流自然言語評価ベンチマークで10-50%以上のキャリブレーションを改善する。
論文 参考訳(メタデータ) (2024-09-29T22:54:31Z) - Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
本研究では,デリー地域の温度予測精度を高めるために,ハイブリッドCNN-LSTMモデルを提案する。
モデルの構築とトレーニングには,包括的データ前処理や探索分析など,直接的および間接的手法を併用した。
実験結果から,CNN-LSTMモデルが従来の予測手法よりも精度と安定性の両面で優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-09-14T11:06:07Z) - Residual-based Attention Physics-informed Neural Networks for Spatio-Temporal Ageing Assessment of Transformers Operated in Renewable Power Plants [0.6223528900192875]
本稿では,変圧器の巻線温度と経年変化に関する時間モデルを紹介する。
物理ベースの偏微分方程式とデータ駆動ニューラルネットワークを用いる。
フローティング太陽光発電プラントで動作する配電変圧器を用いて, 実験結果を検証した。
論文 参考訳(メタデータ) (2024-05-10T12:48:57Z) - Long Horizon Temperature Scaling [90.03310732189543]
LHTS(Long Horizon Temperature Scaling)は、温度スケールの関節分布をサンプリングするための新しい手法である。
温度依存性のLHTS目標を導出し, 温度範囲のモデルを微調整することで, 制御可能な長地平線温度パラメータで生成可能な単一モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-07T18:59:32Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
IoT(Internet of Things)環境は、多数のIoT対応センシングデバイスを介して監視される。
この問題を緩和するため、センサーは比較的低いサンプリング周波数で動作するように設定されることが多い。
これは、予測などの後続の意思決定を劇的に妨げる可能性がある。
論文 参考訳(メタデータ) (2022-06-15T19:46:59Z) - Principal Component Density Estimation for Scenario Generation Using
Normalizing Flows [62.997667081978825]
低次元空間における正規化フローを設定する線形主成分分析(PCA)に基づく次元還元フロー層を提案する。
当社は、2013年から2015年までのドイツにおけるPVおよび風力発電のデータと負荷需要に関する主成分フロー(PCF)を訓練しています。
論文 参考訳(メタデータ) (2021-04-21T08:42:54Z) - Thermal Neural Networks: Lumped-Parameter Thermal Modeling With
State-Space Machine Learning [0.0]
電力システムの熱モデルには、リアルタイム能力と高い推定精度の両方が必要である。
本研究では,熱伝達に基づくラムド型パラメータモデルとして,熱ニューラルネットワーク(TNN)を導入し,両者を統一した。
TNNは状態空間表現を通じて物理的に解釈可能な状態を持ち、エンドツーエンドのトレーニング可能であり、その設計に材料、幾何学、専門知識を必要としない。
論文 参考訳(メタデータ) (2021-03-30T13:15:48Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - A Transfer Learning-based State of Charge Estimation for Lithium-Ion
Battery at Varying Ambient Temperatures [14.419790834463548]
リチウムイオン電池(LiB)駆動デバイスに安定かつ効率的な環境を提供するためには、充電状態(SoC)推定が重要です。
ほとんどのデータ駆動SoCモデルは、温度に対するLiBの高感度を無視し、深刻な予測誤差を引き起こす可能性がある固定周囲温度のために構築されています。
提案手法は, 固定温度での予測誤差(例えば-20degCで24.35%, 25degCで49.82%)を低減させるだけでなく, 新温度での予測精度も向上する。
論文 参考訳(メタデータ) (2021-01-11T05:26:37Z) - Data-Driven Permanent Magnet Temperature Estimation in Synchronous
Motors with Supervised Machine Learning [0.0]
自動車用永久磁石同期モータ(PMSM)における磁石温度のモニタリングは難しい課題である。
過熱によりモータの劣化が激しくなり、機械の制御戦略とその設計に高い懸念が生じる。
いくつかの機械学習(ML)モデルは、潜時高ダイナミックな磁力温度分布を予測するタスクにおいて、その推定精度を実証的に評価する。
論文 参考訳(メタデータ) (2020-01-17T11:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。