Two-dimensional spectroscopy of bosonic collective excitations in disordered many-body systems
- URL: http://arxiv.org/abs/2501.16856v1
- Date: Tue, 28 Jan 2025 11:11:18 GMT
- Title: Two-dimensional spectroscopy of bosonic collective excitations in disordered many-body systems
- Authors: Alex Gómez Salvador, Ivan Morera, Marios H. Michael, Pavel E. Dolgirev, Danica Pavicevic, Albert Liu, Andrea Cavalleri, Eugene Demler,
- Abstract summary: We present a novel theoretical approach for computing and analyzing two-dimensional spectroscopy of bosonic collective excitations in disordered many-body systems.<n>We employ the Keldysh formalism to derive the nonlinear response and obtain two-dimensional spectroscopy maps with particular emphasis on the rephasing sector.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel theoretical approach for computing and analyzing two-dimensional spectroscopy of bosonic collective excitations in disordered many-body systems. Specifically, we employ the Keldysh formalism to derive the nonlinear response and obtain two-dimensional spectroscopy maps with particular emphasis on the rephasing sector, which allows to disentangle different sources of broadening. Our many-body approach successfully distinguishes elastic and inelastic scattering mechanisms contributing to the excitation linewidth. Additionally, using a non-perturbative conserving approach, we demonstrate that the echo peak exhibits a universal asymmetric shape in the sole presence of static disorder, a feature that remains robust against quantum fluctuations. This is in stark contrast to the standard theory based on isolated two-level systems, which fails to account for the dispersive nature of excitations and the interactions between different momentum components.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Exact solution for the collective non-Markovian decay of two fully excited quantum emitters [0.0]
We analyze a collective non-Markovian decay in a minimal system of two excited emitters coupled to a one-dimensional waveguide.
Our methods shed light on the complexity of collective light-matter interactions and open up a pathway for understanding multiparticle open quantum systems.
arXiv Detail & Related papers (2024-03-20T14:54:45Z) - Process tensor approaches to modeling two-dimensional spectroscopy [0.0]
We present a numerical method to model optical spectra of non-Markovian open quantum systems.
To demonstrate the efficacy of our method, we compare 2D electronic spectroscopy simulations produced through our method to Markovian master equation simulations.
arXiv Detail & Related papers (2024-02-23T17:29:57Z) - Using system-reservoir methods to derive effective field theories for
broadband nonlinear quantum optics: a case study on cascaded quadratic
nonlinearities [0.0]
nonlinear interactions among a large number of frequency components induce complex dynamics that may defy analysis.
We introduce a perturbative framework for factoring out reservoir degrees of freedom and establishing a concise effective model.
Our results highlight the utility of system-reservoir methods for deriving accurate, intuitive reduced models.
arXiv Detail & Related papers (2023-11-06T23:00:47Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Superfluid-droplet crossover in a binary boson mixture on a ring: Exact
diagonalization solutions for few-particle systems in one dimension [0.0]
We investigate the formation of self-bound quantum droplets in a one-dimensional binary mixture of bosonic atoms.
Results show a remarkable agreement between the few-body regime and the thermodynamic limit in one dimension.
arXiv Detail & Related papers (2023-02-01T11:45:45Z) - Virtual excitations and entanglement dynamics and polygamy in three
ultra-strongly coupled systems [0.0]
We look at the Milburn dynamics of virtual excitations and how they affect pairwise entanglement.
It is found that the dynamics of excitations and entanglement experience similar profiles against time, physical parameters, and decoherence rate.
arXiv Detail & Related papers (2022-09-29T14:27:52Z) - Probing dressed states and quantum nonlinearities in a strongly coupled
three-qubit waveguide system under optical pumping [0.7770029179741429]
We study a three-qubit waveguide system in the presence of optical pumping.
We show how a rich nonlinear spectrum is obtained by varying the relative decay rates of the mirror qubits.
We also show how the excited three qubit system, in a strong coupling regime, deviates significantly from a Jaynes-Cummings model when entering the nonlinear regime.
arXiv Detail & Related papers (2022-09-21T14:49:46Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - The universal model of strong coupling at the nonlinear parametric
resonance in open cavity-QED systems [0.0]
We show that molecular, quantum-dot, and optomechanical nanocavity-QED systems can be described by a universal model.
We find analytic solutions for quantum states in the rotating wave approximation.
We show how the strong coupling at the nonlinear resonance modifies photon emission and vibrational spectra.
arXiv Detail & Related papers (2021-12-22T01:16:24Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - General analytic theory of classical collinear three wave mixing in a
monolithic cavity [0.0]
We present the analytic theory for a general, classical three wave mixing process in a cavity with arbitrary finesse and non-zero propagation losses.
We demonstrate remarkable agreement between the presented model and the experimentally obtained highly complex second-harmonic spectrum of a titanium-diffused lithium niobate waveguide cavity.
arXiv Detail & Related papers (2020-10-13T12:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.