論文の概要: How Linguistics Learned to Stop Worrying and Love the Language Models
- arxiv url: http://arxiv.org/abs/2501.17047v1
- Date: Tue, 28 Jan 2025 16:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:43.986326
- Title: How Linguistics Learned to Stop Worrying and Love the Language Models
- Title(参考訳): 言語学はいかにして言語モデルを心配し愛すのをやめたか
- Authors: Richard Futrell, Kyle Mahowald,
- Abstract要約: 我々は、LMの成功は言語理論と構造を研究する必要性を損なうと論じている。
彼らは我々に学習に関する議論を再考させ、言語理論における主要な疑問に対して情報を与える。
言語モデルと言語学の関係について楽観的な見解を提供する。
- 参考スコア(独自算出の注目度): 17.413438037432414
- License:
- Abstract: Language models can produce fluent, grammatical text. Nonetheless, some maintain that language models don't really learn language and also that, even if they did, that would not be informative for the study of human learning and processing. On the other side, there have been claims that the success of LMs obviates the need for studying linguistic theory and structure. We argue that both extremes are wrong. LMs can contribute to fundamental questions about linguistic structure, language processing, and learning. They force us to rethink arguments about learning and are informative for major questions in linguistic theory. But they do not replace linguistic structure and theory. We offer an optimistic take on the relationship between language models and linguistics.
- Abstract(参考訳): 言語モデルは、流動的で文法的なテキストを生成することができる。
それでも、言語モデルは実際に言語を学ばず、たとえそうであっても、人間の学習と処理の研究には有益ではない、という意見もある。
一方、LMの成功は言語理論や構造を研究する必要性を損なうという主張もある。
両極端とも間違っていると我々は主張する。
LMは言語構造、言語処理、学習に関する基本的な問題に貢献することができる。
彼らは我々に学習に関する議論を再考させ、言語理論における主要な疑問に対して情報を与える。
しかし、それらは言語構造や理論に取って代わるものではない。
言語モデルと言語学の関係について楽観的な見解を提供する。
関連論文リスト
- Can Language Models Learn Typologically Implausible Languages? [62.823015163987996]
人間の言語にまたがる文法的特徴は、人間の学習バイアスに起因する興味深い相関関係を示している。
言語モデル(LM)が言語普遍性におけるドメイン一般学習バイアスの役割をよりよく決定する方法について論じる。
本研究は,英語(頭初期)と日本語(頭最終)の超自然主義的だが反実的なバージョンを用いて,LMを試験する。
論文 参考訳(メタデータ) (2025-02-17T20:40:01Z) - Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
我々は,Large Language Models(LLM)の言語能力に関する主張は,少なくとも2つの根拠のない仮定に基づいていると主張している。
言語完全性は、自然言語のような明瞭で完全なものが存在すると仮定する。
データ完全性の仮定は、言語がデータによって定量化され、完全にキャプチャされるという信念に依存している。
論文 参考訳(メタデータ) (2024-07-11T18:06:01Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - Mission: Impossible Language Models [29.249131112359503]
我々は、複雑さの異なる合成不可能な言語のセットを開発する。
一端には、英語の単語のランダムなシャッフルや不可逆的なシャッフルなど、本質的に不可能な言語がある。
一方、言語は直感的には不可能ではないかもしれないが、言語学ではそう考えられていることが多い。
論文 参考訳(メタデータ) (2024-01-12T07:24:26Z) - Counterfactually Probing Language Identity in Multilingual Models [15.260518230218414]
多言語モデルの内部構造を探索するために, 対実的探索法AlterRepを用いる。
言語 X のテンプレートを考えると、言語 Y が言語 Y の単語の確率を体系的に増加させることが分かる。
論文 参考訳(メタデータ) (2023-10-29T01:21:36Z) - Why Linguistics Will Thrive in the 21st Century: A Reply to Piantadosi
(2023) [5.2424255020469595]
我々は、「現代言語モデルはチョムスキーの言語へのアプローチに反する」というピアンタドシの主張を批判的に評価する。
大きな言語モデルの性能と実用性にもかかわらず、人間は桁違いに少ないデータに晒された後、言語に対する能力を達成する。
本稿は,21世紀以降の科学分野としての生成言語学が不可欠であると結論付けている。
論文 参考訳(メタデータ) (2023-08-06T23:41:14Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - Language Models are not Models of Language [0.0]
トランスファーラーニングにより、言語モデリングタスクでトレーニングされた大規模なディープラーニングニューラルネットワークにより、パフォーマンスが大幅に向上した。
深層学習モデルは言語の理論的モデルではないので、言語モデルという用語は誤解を招く。
論文 参考訳(メタデータ) (2021-12-13T22:39:46Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。