論文の概要: On the Thinking-Language Modeling Gap in Large Language Models
- arxiv url: http://arxiv.org/abs/2505.12896v1
- Date: Mon, 19 May 2025 09:31:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:11.514397
- Title: On the Thinking-Language Modeling Gap in Large Language Models
- Title(参考訳): 大規模言語モデルにおける思考・言語モデリングギャップについて
- Authors: Chenxi Liu, Yongqiang Chen, Tongliang Liu, James Cheng, Bo Han, Kun Zhang,
- Abstract要約: 言語と思考のモデリングには大きなギャップがあることが示される。
本稿では,このギャップを実証し緩和するために,Language-of-Thoughts (LoT) と呼ばれる新しいプロンプト手法を提案する。
- 参考スコア(独自算出の注目度): 68.83670974539108
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: System 2 reasoning is one of the defining characteristics of intelligence, which requires slow and logical thinking. Human conducts System 2 reasoning via the language of thoughts that organizes the reasoning process as a causal sequence of mental language, or thoughts. Recently, it has been observed that System 2 reasoning can be elicited from Large Language Models (LLMs) pre-trained on large-scale natural languages. However, in this work, we show that there is a significant gap between the modeling of languages and thoughts. As language is primarily a tool for humans to share knowledge and thinking, modeling human language can easily absorb language biases into LLMs deviated from the chain of thoughts in minds. Furthermore, we show that the biases will mislead the eliciting of "thoughts" in LLMs to focus only on a biased part of the premise. To this end, we propose a new prompt technique termed Language-of-Thoughts (LoT) to demonstrate and alleviate this gap. Instead of directly eliciting the chain of thoughts from partial information, LoT instructs LLMs to adjust the order and token used for the expressions of all the relevant information. We show that the simple strategy significantly reduces the language modeling biases in LLMs and improves the performance of LLMs across a variety of reasoning tasks.
- Abstract(参考訳): システム2推論はインテリジェンスの定義する特性のひとつであり、遅く論理的な思考を必要とする。
人間は思考の言語を通してシステム2の推論を行い、推論過程を精神言語や思考の因果関係として整理する。
近年,大規模自然言語で事前学習したLarge Language Models (LLMs) から System 2 推論を抽出できることが報告されている。
しかし,本研究では,言語と思考のモデリングには大きなギャップがあることが示されている。
言語は主に知識と思考を共有するためのツールであるため、人間の言語をモデル化することで、思考の連鎖から逸脱したLLMに言語バイアスを簡単に吸収することができる。
さらに、これらのバイアスは、LLMにおける「思考」の引き起こしを誤解させ、前提の偏りにのみ焦点をあてることが示される。
そこで我々はLanguage-of-Thoughts (LoT) と呼ばれる新しいプロンプト手法を提案し,このギャップを実証し緩和する。
部分的な情報から思考の連鎖を直接引き出す代わりに、LoTはLLMに、関連するすべての情報の表現に使用される順序とトークンを調整するように指示する。
本研究では,LLMにおける言語モデリングバイアスを大幅に低減し,多種多様な推論タスクにおけるLLMの性能向上を図っている。
関連論文リスト
- Randomly Sampled Language Reasoning Problems Reveal Limits of LLMs [8.146860674148044]
我々は,データセットリコールのリスクを回避しつつ,モデルの言語理解能力の測定を試みる。
決定論的有限オートマトン(DFA)により認識される言語タスクの多種族をパラメータ化する。
3 状態 DFA の驚くほど単純な設定であっても、LLM は言語認識と合成の両タスクにおいてパラメータ化されていない ngram モデルより劣ることがわかった。
論文 参考訳(メタデータ) (2025-01-06T07:57:51Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
我々は,既存の英語および多言語プロンプトを用いた15の型的多様言語の評価を行った。
Llama Instruct と Mistral のモデルでは,言語的混乱の度合いが高いことがわかった。
言語混乱は,数発のプロンプト,多言語SFT,選好調整によって部分的に緩和できることがわかった。
論文 参考訳(メタデータ) (2024-06-28T17:03:51Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Eliciting Better Multilingual Structured Reasoning from LLMs through Code [17.870002864331322]
我々は6言語にまたがる4つのタスクを網羅する,xSTREETと呼ばれる多言語構造推論と説明データセットを提案する。
xSTREETは、英語と非英語の推論タスクの基本的なLLMパフォーマンスのギャップを露呈する。
このギャップを緩和する2つの方法を提案する。
論文 参考訳(メタデータ) (2024-03-05T00:48:56Z) - Breaking the Language Barrier: Improving Cross-Lingual Reasoning with
Structured Self-Attention [18.439771003766026]
多言語言語モデル(MultiLM)が、異なる言語での推論のために微調整された場合、論理的推論能力を他の言語に伝達できるかどうかを検討する。
我々は,MultiLMが言語間の推論能力をモノリンガルな環境で伝達できることを実証した。
この観察に続いて,コードスイッチングシーケンスにおける言語横断的な注意を促すために,専用パラメータセットを用いた新しいアテンション機構を提案する。
論文 参考訳(メタデータ) (2023-10-23T18:06:38Z) - Meta-Reasoning: Semantics-Symbol Deconstruction for Large Language Models [34.22393697176282]
実世界の象徴的手法の適用性と適応性を広げるためのメタ推論を提案する。
この方法はLLMに対して、推論に依存しない意味情報を汎用的な記号表現に分解する権限を与える。
我々は、算術、記号、論理的推論といった従来の推論タスクを含む10以上のデータセットと、理論の推論のようなより複雑な対話的推論タスクに関する広範な実験を行う。
論文 参考訳(メタデータ) (2023-06-30T17:38:10Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。