論文の概要: DINOSTAR: Deep Iterative Neural Object Detector Self-Supervised Training for Roadside LiDAR Applications
- arxiv url: http://arxiv.org/abs/2501.17076v1
- Date: Tue, 28 Jan 2025 17:01:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:21.487957
- Title: DINOSTAR: Deep Iterative Neural Object Detector Self-Supervised Training for Roadside LiDAR Applications
- Title(参考訳): DINOSTAR:ロードサイドLiDAR応用のためのディープイテレーティブニューラルオブジェクト検出器の自己監督トレーニング
- Authors: Muhammad Shahbaz, Shaurya Agarwal,
- Abstract要約: 本稿では,道路側ポイントクラウドデータに適したディープ・オブジェクト・ディテクターを訓練するためのエンドツーエンド,スケーラブル,かつセルフ・教師付きフレームワークを開発する。
その結果,複数の教師から混在する騒音のアノテーションを学生モデルで学習することで,背景・背景をより効果的に識別する能力を高めることが示唆された。
一般に利用可能な道路側データセットと最先端のディープ・オブジェクト・ディテクターを含む評価は、提案フレームワークが人間の注釈付きラベルでトレーニングされたディープ・オブジェクト・ディテクターに匹敵する性能を達成することを実証している。
- 参考スコア(独自算出の注目度): 1.675857332621569
- License:
- Abstract: Recent advancements in deep-learning methods for object detection in point-cloud data have enabled numerous roadside applications, fostering improvements in transportation safety and management. However, the intricate nature of point-cloud data poses significant challenges for human-supervised labeling, resulting in substantial expenditures of time and capital. This paper addresses the issue by developing an end-to-end, scalable, and self-supervised framework for training deep object detectors tailored for roadside point-cloud data. The proposed framework leverages self-supervised, statistically modeled teachers to train off-the-shelf deep object detectors, thus circumventing the need for human supervision. The teacher models follow fine-tuned set standard practices of background filtering, object clustering, bounding-box fitting, and classification to generate noisy labels. It is presented that by training the student model over the combined noisy annotations from multitude of teachers enhances its capacity to discern background/foreground more effectively and forces it to learn diverse point-cloud-representations for object categories of interest. The evaluations, involving publicly available roadside datasets and state-of-art deep object detectors, demonstrate that the proposed framework achieves comparable performance to deep object detectors trained on human-annotated labels, despite not utilizing such human-annotations in its training process.
- Abstract(参考訳): ポイントクラウドデータにおける物体検出の深層学習手法の進歩により、多くの路面応用が可能となり、交通安全と管理の改善が促進された。
しかし、ポイントクラウドデータの複雑な性質は、人間の監督されたラベル付けに重大な課題をもたらし、時間と資本のかなりの支出をもたらす。
本稿では,道路沿いのクラウドデータに適した深層物体検出装置を訓練するためのエンドツーエンドでスケーラブルで自己管理型のフレームワークを開発することで,この問題に対処する。
提案手法は,自己監督型,統計的にモデル化された教師を用いて,市販の深層物体検出装置を訓練し,人間の監督の必要性を回避する。
教師モデルは、バックグラウンドフィルタリング、オブジェクトクラスタリング、バウンディングボックスフィッティング、およびノイズの多いラベルを生成するための分類の微調整された標準プラクティスに従う。
複数教師の混在した騒音のアノテーションを学習することで,背景・背景をより効果的に識別する能力を高め,対象分野の多様なポイントクラウド表現の学習を強制することが示唆された。
一般に利用可能な道路側データセットと最先端のディープ・オブジェクト・ディテクターを含む評価は、このフレームワークが、トレーニングプロセスにおいてそのような人間のアノテーションを使用しないにもかかわらず、人間のアノテートされたラベルでトレーニングされたディープ・オブジェクト・ディテクターに匹敵する性能を達成していることを示している。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Label-Efficient 3D Object Detection For Road-Side Units [10.663986706501188]
協調的知覚は、インテリジェント・ロードサイド・ユニット(RSU)との深部情報融合による自動運転車の知覚を高める
これらの手法は、特に注釈付きRSUデータを必要とするため、実際のデプロイメントにおいて大きなハードルを生んでいる。
教師なしオブジェクト発見に基づくRSUのためのラベル効率の高いオブジェクト検出手法を考案する。
論文 参考訳(メタデータ) (2024-04-09T12:29:16Z) - Proposal-Contrastive Pretraining for Object Detection from Fewer Data [11.416621957617334]
本稿では,新しい教師なし総合事前学習手法ProSeCoを提案する。
ProSeCoは、コントラスト学習のために検出器によって生成される多数のオブジェクト提案を使用する。
本手法は,標準および新しいベンチマークにおいて,対象検出のための教師なし事前学習において,最先端の手法であることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:59:26Z) - Towards End-to-End Unsupervised Saliency Detection with Self-Supervised
Top-Down Context [25.85453873366275]
トップダウンコンテキストを介し、自己教師付きエンドツーエンドの有能なオブジェクト検出フレームワークを提案する。
最も深い特徴から自己ローカライゼーションを生かして位置マップを構築し,最も指導的なセグメンテーション指導を学習する。
提案手法は,近年のエンド・ツー・エンド手法と,多段階ソリューションの大部分において,先行的な性能を実現する。
論文 参考訳(メタデータ) (2023-10-14T08:43:22Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
本稿では,少数のトレーニング画像にのみ手動アノテーションを応用して,効果的なサルエント物体検出モデルを学習することを提案する。
我々は,このタスクを,少額の有能な物体検出とみなし,少数のコストの学習シナリオを促進するために,APL(Adversarialpaced Learning)ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-05T14:15:49Z) - Co-training for On-board Deep Object Detection [0.0]
人間のラベル付きバウンディングボックスを頼りにすることにより、最高のディープビジョンベースのオブジェクト検出器を教師付きで訓練する。
共同学習は、未ラベル画像における自己ラベルオブジェクトの半教師付き学習手法である。
我々は、協調学習がオブジェクトのラベル付けを緩和し、タスクに依存しないドメイン適応と単独で作業するためのパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-08-12T19:08:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。