論文の概要: Histoires Morales: A French Dataset for Assessing Moral Alignment
- arxiv url: http://arxiv.org/abs/2501.17117v1
- Date: Tue, 28 Jan 2025 18:07:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:52.668758
- Title: Histoires Morales: A French Dataset for Assessing Moral Alignment
- Title(参考訳): Histoires Morales: モラルアライメントを評価するためのフランスのデータセット
- Authors: Thibaud Leteno, Irina Proskurina, Antoine Gourru, Julien Velcin, Charlotte Laclau, Guillaume Metzler, Christophe Gravier,
- Abstract要約: ヒストワール・モラレス(Histoires Morales)は、モラル・ストーリーから派生したフランスのデータセットである。
我々は、そのデータセット内の道徳的価値のアノテーションに依存して、フランスの規範との整合性を確保する。
LLMはデフォルトでは人間の道徳的規範と一致しているが、道徳的データと不道徳データの両方において、ユーザ・参照の最適化の影響を受けやすい。
- 参考スコア(独自算出の注目度): 6.521941403514571
- License:
- Abstract: Aligning language models with human values is crucial, especially as they become more integrated into everyday life. While models are often adapted to user preferences, it is equally important to ensure they align with moral norms and behaviours in real-world social situations. Despite significant progress in languages like English and Chinese, French has seen little attention in this area, leaving a gap in understanding how LLMs handle moral reasoning in this language. To address this gap, we introduce Histoires Morales, a French dataset derived from Moral Stories, created through translation and subsequently refined with the assistance of native speakers to guarantee grammatical accuracy and adaptation to the French cultural context. We also rely on annotations of the moral values within the dataset to ensure their alignment with French norms. Histoires Morales covers a wide range of social situations, including differences in tipping practices, expressions of honesty in relationships, and responsibilities toward animals. To foster future research, we also conduct preliminary experiments on the alignment of multilingual models on French and English data and the robustness of the alignment. We find that while LLMs are generally aligned with human moral norms by default, they can be easily influenced with user-preference optimization for both moral and immoral data.
- Abstract(参考訳): 人間の価値を持つ言語モデルをアライメントすることは、特に日常の生活に統合されるため、非常に重要です。
モデルはしばしばユーザの嗜好に適応するが、現実の社会的状況における道徳的規範や行動と一致させることは同様に重要である。
英語や中国語などの言語が大幅に進歩したにもかかわらず、フランス語はこの分野ではほとんど関心を示さず、LLMがこの言語で道徳的推論をどのように扱うかについての理解の欠如を残している。
このギャップに対処するために、モラル・ストーリーから派生したフランス語のデータセットであるHistoires Moralesを紹介する。
我々はまた、そのデータセット内の道徳的価値のアノテーションを、フランスの規範との整合性を確保するために頼りにしています。
ヒストリーズ・モラレスは、チップの実践の違い、関係における誠実さの表現、動物に対する責任など、幅広い社会的状況をカバーしている。
今後の研究を促進するために、フランス語と英語のデータに対する多言語モデルのアライメントとアライメントの堅牢性に関する予備実験を行った。
LLMはデフォルトでは人間の道徳的規範と一致しているが、道徳的データと不道徳データの両方において、ユーザ・参照の最適化の影響を受けやすい。
関連論文リスト
- The Moral Foundations Weibo Corpus [0.0]
道徳的な感情は、オンライン環境とオフライン環境の両方に影響し、行動スタイルと相互作用パターンを形成する。
既存のコーパスは価値はあるものの、しばしば言語的な制限に直面している。
このコーパスは、Weiboに関する25,671の中国語のコメントで構成され、6つの多様な話題領域を含んでいる。
論文 参考訳(メタデータ) (2024-11-14T17:32:03Z) - Evaluating Moral Beliefs across LLMs through a Pluralistic Framework [22.0799438612003]
本研究では,4つの著名な大規模言語モデルの道徳的信念を評価するために,新しい3つのモジュール・フレームワークを提案する。
我々は、道徳的単語から派生した中国語の道徳的選択シナリオ472のデータセットを構築した。
これらの道徳的選択をランク付けすることで、異なる言語モデルによって保持される様々な道徳的信念を識別する。
論文 参考訳(メタデータ) (2024-11-06T04:52:38Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Decoding Multilingual Moral Preferences: Unveiling LLM's Biases Through the Moral Machine Experiment [11.82100047858478]
本稿では,多言語環境下での5つの大規模言語モデルの道徳的嗜好を検討するために,モラルマシン実験(MME)に基づく。
我々は、MMEの6500のシナリオを生成し、どのアクションをとるか10言語でモデルを促す。
我々の分析によると、全てのLLMはある程度異なる道徳的偏見を阻害し、人間の嗜好と異なるだけでなく、モデル自体の複数の言語にもまたがっている。
論文 参考訳(メタデータ) (2024-07-21T14:48:13Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
大規模言語モデル(LLM)の社会的・文化的変動を評価するためのデータセット「CIVICS:文化インフォームド・バリュース・インクルーシブ・コーパス・フォー・ソシエティ・インパクト」
我々は、LGBTQIの権利、社会福祉、移民、障害権利、代理など、特定の社会的に敏感なトピックに対処する、手作りの多言語プロンプトのデータセットを作成します。
論文 参考訳(メタデータ) (2024-05-22T20:19:10Z) - MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions [4.747987317906765]
道徳的価値は、情報を評価し、意思決定し、重要な社会問題に関する判断を形成する上で、基本的な役割を担います。
自然言語処理(NLP)の最近の進歩は、人文コンテンツにおいて道徳的価値を測ることができることを示している。
本稿では、社会談話における道徳的感情を捉えるために微調整された言語表現モデルであるMoralBERTを紹介する。
論文 参考訳(メタデータ) (2024-03-12T14:12:59Z) - Knowledge of cultural moral norms in large language models [3.475552182166427]
各国の道徳規範に関する知識をモノリンガル英語モデルに含める程度について検討する。
我々は、世界価値調査とPEW世界道徳調査の2つの公開データセットを用いて分析を行った。
事前学習された英語モデルは、以前報告された英語の道徳規範よりも、各国の経験的道徳規範を悪化させる。
論文 参考訳(メタデータ) (2023-06-02T18:23:35Z) - Speaking Multiple Languages Affects the Moral Bias of Language Models [70.94372902010232]
事前訓練された多言語言語モデル(PMLM)は、複数の言語からのデータや言語間転送を扱う際に一般的に用いられる。
モデルは英語から道徳的規範を捉え、他の言語に強制するか?
我々の実験は、事実、PMLMが道徳的バイアスを符号化していることを示しているが、これらは必ずしも人間の意見の文化的相違や共通点に対応しているわけではない。
論文 参考訳(メタデータ) (2022-11-14T20:08:54Z) - Do Multilingual Language Models Capture Differing Moral Norms? [71.52261949766101]
大量多言語文表現は、未処理データの大規模なコーパスに基づいて訓練される。
これは、高資源言語からの道徳的判断を含む文化的価値をモデルが把握する原因となる可能性がある。
特定の言語におけるデータ不足は、ランダムで潜在的に有害な信念を発達させる可能性がある。
論文 参考訳(メタデータ) (2022-03-18T12:26:37Z) - Aligning AI With Shared Human Values [85.2824609130584]
私たちは、正義、幸福、義務、美徳、常識道徳の概念にまたがる新しいベンチマークであるETHICSデータセットを紹介します。
現在の言語モデルは、基本的な人間の倫理的判断を予測できる有望だが不完全な能力を持っている。
私たちの研究は、今日の機械倫理の進歩を示しており、人間の価値観に合わせたAIへの足掛かりを提供する。
論文 参考訳(メタデータ) (2020-08-05T17:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。