論文の概要: Tuning LLM Judges Hyperparameters
- arxiv url: http://arxiv.org/abs/2501.17178v1
- Date: Fri, 24 Jan 2025 17:01:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:55:05.008534
- Title: Tuning LLM Judges Hyperparameters
- Title(参考訳): チューニングLDMによるハイパーパラメータの判断
- Authors: David Salinas, Omar Swelam, Frank Hutter,
- Abstract要約: 大きな言語モデル(LLM)は、しばしば人為的なアノテーションを必要とする。
この問題に対処するため、2つのLLMの出力を比較するLLMベースの審査員が提案されている。
いくつかのアプローチが提案されているが、異なる論文の間には多くの相反する要因が存在する。
- 参考スコア(独自算出の注目度): 42.06346155380305
- License:
- Abstract: Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune hyperparameter of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trades accuracy for cost and also reduce significantly the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility.
- Abstract(参考訳): 大規模言語モデル(LLM)を評価するには、しばしば人為的なアノテーションが必要となる。
この問題を解決するために、LLMベースの審査員が提案され、人間の介入なしにモデルのランク付けを可能にする2つのLCMの出力を比較した。
いくつかのアプローチが提案されているが、異なる論文の間には多くの相反する要因が存在する。
例えば、モデル、プロンプトや他のハイパーパラメータは、通常、同時に変更されるため、リンゴとリンゴの比較は困難である。
本稿では,LLM審査員のハイパーパラメータを系統的に解析し,チューニングすることを提案する。
審査員の評価に要する高コストを緩和するために,複数目的の多忠実さを活用して,コストの正確さを判断し,検索コストを大幅に削減する手法を提案する。
提案手法は,既存のベンチマークを精度とコスト効率で上回るだけでなく,オープンウェイトモデルも活用し,アクセシビリティと再現性の向上を図る。
関連論文リスト
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
judgeBenchは、知識、推論、数学、コーディングにまたがる挑戦的な応答ペアに関するLSMベースの判断を評価するためのベンチマークである。
審査員、微調整された審査員、マルチエージェントの審査員、報酬モデルに関する包括的な評価は、審査員ベンチが以前のベンチマークよりもかなり大きな課題を課していることを示している。
論文 参考訳(メタデータ) (2024-10-16T17:58:19Z) - From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks [11.01213914485374]
数学的推論タスクにおいて,大規模言語モデル (LLM) について検討する。
本分析により,判定性能と候補モデルタスク性能との間に強い相関関係が明らかになった。
本研究では,各モデルのタスク性能などの統計データを用いて,判定性能の予測を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2024-09-06T10:09:41Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
LLM(Large Language Models)を用いたプロンプトベースの手法の開発には、多くの意思決定が必要である。
この課題に対処するための新しい手法を提案する。
典型的に必要とされるリソースの5~15%しか必要とせず,トップパフォーマンスの手法を識別できることが示される。
論文 参考訳(メタデータ) (2024-07-08T17:48:42Z) - Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges [6.609843448260634]
LLM-as-a-judgeパラダイムは,大規模言語モデルを評価するアプローチとして急速に普及している。
本稿では,人間間の合意が高いクリーンなシナリオに焦点を当てる。
我々は、複雑性や長さを早めるための感度や、寛大さへの傾向など、審査モデルの脆弱性を識別する。
論文 参考訳(メタデータ) (2024-06-18T13:49:54Z) - Fairer Preferences Elicit Improved Human-Aligned Large Language Model Judgments [41.25558612970942]
大規模言語モデル (LLMs) が優先バイアスを示し, 設計に敏感であることを示す。
この現象に触発された自動ゼロショット評価指向のプロンプト最適化フレームワークZEPOを提案する。
論文 参考訳(メタデータ) (2024-06-17T09:48:53Z) - Language Model Council: Democratically Benchmarking Foundation Models on Highly Subjective Tasks [3.58262772907022]
言語モデル協議会(LMC: Language Model Council)では、LLMのグループが協力してテストを作成し、それに反応し、お互いの反応を評価してランキングを作成する。
感情的インテリジェンスに関する詳細なケーススタディでは、対人対立に対するオープン・エンド・レスポンスにおいて、20の最近のLCMを相互にランク付けするために配置する。
以上の結果から, LMCは, より分離性が高く, より堅牢なランキングを作成でき, ユーザスタディにより, 個々のLCM審査員よりも人的評価に整合性があることが示唆された。
論文 参考訳(メタデータ) (2024-06-12T19:05:43Z) - Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models [56.02275285521847]
LLm評価器のパネル(PoLL)を用いた評価モデルを提案する。
より多数の小さなモデルで構成されたPoLLは,1つの大判定器より優れ,不整合モデルファミリーの構成によるモデル内バイアスが小さく,しかも7倍以上のコストがかかる。
論文 参考訳(メタデータ) (2024-04-29T15:33:23Z) - JudgeLM: Fine-tuned Large Language Models are Scalable Judges [54.007823006976516]
大規模言語モデル (LLM) を拡張性判断器 (JudgeLM) として微調整し, LLM を効率よく, かつ効率的に評価する手法を提案する。
まず, タスクシード, LLM 生成回答, GPT-4 生成判断を含む包括的, 大規模, 高品質なデータセットを提案する。
次に、微調整LDMにおける重要なバイアスを判断として分析し、位置バイアス、知識バイアス、フォーマットバイアスとみなす。
論文 参考訳(メタデータ) (2023-10-26T17:48:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。