論文の概要: Tuning LLM Judge Design Decisions for 1/1000 of the Cost
- arxiv url: http://arxiv.org/abs/2501.17178v3
- Date: Tue, 18 Mar 2025 09:09:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 16:29:10.960934
- Title: Tuning LLM Judge Design Decisions for 1/1000 of the Cost
- Title(参考訳): 1/1000ドルのLCM判定設計の調整
- Authors: David Salinas, Omar Swelam, Frank Hutter,
- Abstract要約: 大きな言語モデル(LLM)は、しばしば人為的なアノテーションを必要とする。
この問題に対処するため、2つのLLMの出力を比較するLLMベースの審査員が提案されている。
いくつかのアプローチが提案されているが、異なる論文の間には多くの相反する要因が存在する。
- 参考スコア(独自算出の注目度): 42.06346155380305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune hyperparameter of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trades accuracy for cost and also reduce significantly the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility.
- Abstract(参考訳): 大規模言語モデル(LLM)を評価するには、しばしば人為的なアノテーションが必要となる。
この問題を解決するために、LLMベースの審査員が提案され、人間の介入なしにモデルのランク付けを可能にする2つのLCMの出力を比較した。
いくつかのアプローチが提案されているが、異なる論文の間には多くの相反する要因が存在する。
例えば、モデル、プロンプトや他のハイパーパラメータは、通常、同時に変更されるため、リンゴとリンゴの比較は困難である。
本稿では,LLM審査員のハイパーパラメータを系統的に解析し,チューニングすることを提案する。
審査員の評価に要する高コストを緩和するために,複数目的の多忠実さを活用して,コストの正確さを判断し,検索コストを大幅に削減する手法を提案する。
提案手法は,既存のベンチマークを精度とコスト効率で上回るだけでなく,オープンウェイトモデルも活用し,アクセシビリティと再現性の向上を図る。
関連論文リスト
- JudgeLRM: Large Reasoning Models as a Judge [65.14085339820795]
我々は,Large Language Models (LLMs) の判断が推論能力の強化から真に恩恵を受けるかどうかを考察する。
本稿では、強化学習(RL)を用いて学習した判断指向LLMのファミリーであるジャッジLRMを紹介する。
論文 参考訳(メタデータ) (2025-03-31T02:18:51Z) - RocketEval: Efficient Automated LLM Evaluation via Grading Checklist [32.66840523942929]
本稿では,RocketEval という軽量 LLM を判断に活用して,単純かつ再現性が高く,精度の高い自動評価手法を提案する。
自動評価ベンチマークであるMT-BenchとWildBenchを用いた実験により,RocketEvalは,Gemma-2-2Bを判定として使用する場合,ヒトの嗜好と高い相関(0.965)を達成できることがわかった。
論文 参考訳(メタデータ) (2025-03-07T04:51:30Z) - Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models [68.92020689188887]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) に対する幻覚を緩和する効果を証明している。
既存の自動評価メトリクスは、トレーニングと評価の間にRAGモデルによって生成されたアウトプットを正確に評価することはできない。
本稿では,RAGモデルのより正確な評価を実現するため,LCMの強化を目的とした判断一貫性(ConsJudge)手法を提案する。
論文 参考訳(メタデータ) (2025-02-26T04:50:43Z) - JudgeBlender: Ensembling Judgments for Automatic Relevance Assessment [28.4353755578306]
大規模言語モデル(LLM)は、検索タスクの関連ラベルを生成することを約束している。
我々は,より小型のオープンソースモデルを用いて妥当性判断を行うフレームワークであるJiceBlenderを紹介した。
論文 参考訳(メタデータ) (2024-12-17T19:04:15Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
judgeBenchは、知識、推論、数学、コーディングにまたがる挑戦的な応答ペアに関するLSMベースの判断を評価するためのベンチマークである。
審査員、微調整された審査員、マルチエージェントの審査員、報酬モデルに関する包括的な評価は、審査員ベンチが以前のベンチマークよりもかなり大きな課題を課していることを示している。
論文 参考訳(メタデータ) (2024-10-16T17:58:19Z) - From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks [11.01213914485374]
数学的推論タスクにおいて,大規模言語モデル (LLM) について検討する。
本分析により,判定性能と候補モデルタスク性能との間に強い相関関係が明らかになった。
本研究では,各モデルのタスク性能などの統計データを用いて,判定性能の予測を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2024-09-06T10:09:41Z) - On Speeding Up Language Model Evaluation [48.51924035873411]
LLM(Large Language Models)を用いたプロンプトベースの手法の開発には、多くの意思決定が必要である。
この課題に対処するための新しい手法を提案する。
典型的に必要とされるリソースの5~15%しか必要とせず,トップパフォーマンスの手法を識別できることが示される。
論文 参考訳(メタデータ) (2024-07-08T17:48:42Z) - Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges [6.609843448260634]
LLM-as-a-judgeパラダイムは,大規模言語モデルを評価するアプローチとして急速に普及している。
本稿では,人間間の合意が高いクリーンなシナリオに焦点を当てる。
我々は、複雑性や長さを早めるための感度や、寛大さへの傾向など、審査モデルの脆弱性を識別する。
論文 参考訳(メタデータ) (2024-06-18T13:49:54Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
決定は、より優れた性能を持つ大型LCMを使うか、より少ないコストで使用するかに重点を置いている。
我々は,LLMの世代間不確実性のみを意思決定基準として,より単純な解を提案する。
実験の結果、この単純な解はコストと性能を最適にバランスさせ、27の試験装置中25の既存手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-03T14:38:59Z) - Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models [56.02275285521847]
LLm評価器のパネル(PoLL)を用いた評価モデルを提案する。
より多数の小さなモデルで構成されたPoLLは,1つの大判定器より優れ,不整合モデルファミリーの構成によるモデル内バイアスが小さく,しかも7倍以上のコストがかかる。
論文 参考訳(メタデータ) (2024-04-29T15:33:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。