論文の概要: An AI-Driven Live Systematic Reviews in the Brain-Heart Interconnectome: Minimizing Research Waste and Advancing Evidence Synthesis
- arxiv url: http://arxiv.org/abs/2501.17181v1
- Date: Sat, 25 Jan 2025 03:51:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:55.493402
- Title: An AI-Driven Live Systematic Reviews in the Brain-Heart Interconnectome: Minimizing Research Waste and Advancing Evidence Synthesis
- Title(参考訳): 脳-心インターコネクトームにおけるAI駆動型ライブシステムレビュー:研究廃棄物の最小化とエビデンス合成の促進
- Authors: Arya Rahgozar, Pouria Mortezaagha, Jodi Edwards, Douglas Manuel, Jessie McGowen, Merrick Zwarenstein, Dean Fergusson, Andrea Tricco, Kelly Cobey, Margaret Sampson, Malcolm King, Dawn Richards, Alexandra Bodnaruc, David Moher,
- Abstract要約: 我々はブレイン・ハード・インターコネクトーム(BHI)ドメインの体系的レビューを強化するAI駆動システムを開発した。
このシステムは、PICOS(Population, Intervention, Comparator, Outcome, and Study Design)の自動検出、ベクトル埋め込みを用いたセマンティック検索、グラフベースのクエリ、トピックモデリングを統合している。
このシステムはリアルタイムのアップデートを提供し、リビングデータベースによる研究の無駄を減らし、ダッシュボードと対話型AIを備えた対話型インターフェースを提供する。
- 参考スコア(独自算出の注目度): 29.81784450632149
- License:
- Abstract: The Brain-Heart Interconnectome (BHI) combines neurology and cardiology but is hindered by inefficiencies in evidence synthesis, poor adherence to quality standards, and research waste. To address these challenges, we developed an AI-driven system to enhance systematic reviews in the BHI domain. The system integrates automated detection of Population, Intervention, Comparator, Outcome, and Study design (PICOS), semantic search using vector embeddings, graph-based querying, and topic modeling to identify redundancies and underexplored areas. Core components include a Bi-LSTM model achieving 87% accuracy for PICOS compliance, a study design classifier with 95.7% accuracy, and Retrieval-Augmented Generation (RAG) with GPT-3.5, which outperformed GPT-4 for graph-based and topic-driven queries. The system provides real-time updates, reducing research waste through a living database and offering an interactive interface with dashboards and conversational AI. While initially developed for BHI, the system's adaptable architecture enables its application across various biomedical fields, supporting rigorous evidence synthesis, efficient resource allocation, and informed clinical decision-making.
- Abstract(参考訳): Brain-Heart Interconnectome (BHI) は神経学と心臓学を組み合わせているが、エビデンス合成の非効率性、品質基準の欠如、研究廃棄物によって妨げられている。
これらの課題に対処するため、BHIドメインの体系的レビューを強化するAI駆動システムを開発した。
このシステムは、PICOS(Population, Intervention, Comparator, Outcome, and Study Design)の自動検出、ベクトル埋め込みを用いたセマンティック検索、グラフベースのクエリ、およびトピックモデリングを統合し、冗長性と未探索領域を識別する。
コアコンポーネントには、PICOS準拠のための87%の精度を達成するBi-LSTMモデル、95.7%の精度を持つ研究設計分類器、GPT-3.5による検索・拡張生成(RAG)が含まれる。
このシステムはリアルタイムのアップデートを提供し、リビングデータベースによる研究の無駄を減らし、ダッシュボードと対話型AIを備えた対話型インターフェースを提供する。
当初はBHI向けに開発されたが、システムは様々な生体医学分野に適用可能であり、厳密なエビデンス合成、効率的な資源配分、情報的臨床意思決定をサポートする。
関連論文リスト
- HeartBERT: A Self-Supervised ECG Embedding Model for Efficient and Effective Medical Signal Analysis [2.3709422532220805]
HeartBertは自然言語処理におけるBERT(Bidirectional Representations from Transformers)にインスパイアされ、自己教師型学習アプローチで強化されている。
提案モデルの汎用性,一般化性,効率性を示すために,睡眠ステージ検出と心拍分類という2つの重要な下流課題が選択された。
HeartBERTの優位性と進歩を示すための一連の実験が実施されている。
論文 参考訳(メタデータ) (2024-11-08T14:25:00Z) - Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns [0.0]
本研究では,ハイブリッドAIシステムの設計パターンとその臨床的意思決定における有効性について分析する。
Boxologyの構造化されたモジュール型アポラチは、ハイブリッドAIシステムの開発と分析において、大きなアドバンテージを提供する。
論文 参考訳(メタデータ) (2024-08-05T12:53:04Z) - Detecting algorithmic bias in medical-AI models using trees [7.939586935057782]
本稿では,医療AI意思決定支援システムにおけるアルゴリズムバイアスの領域を検出するための革新的な枠組みを提案する。
本手法は,医学・AIモデルにおける潜在的なバイアスを,特に敗血症予測の文脈で効果的に同定する。
論文 参考訳(メタデータ) (2023-12-05T18:47:34Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Simulation-based Inference for Cardiovascular Models [43.55219268578912]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
2007年のバイオセキュリティ・マルチモーダル・アセスメント・キャンペーンにおいて,ATVS-UAM融合手法を品質ベースで評価し,評価を行った。
我々のアプローチは線形ロジスティック回帰に基づいており、融合したスコアはログライクな比率になる傾向にある。
その結果,提案手法はルールベースの核融合方式よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-24T12:11:22Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
我々は、ECGベースの医療アプリケーションのための連合環境で、新しい説明可能な人工知能(XAI)ベースのディープラーニングフレームワークを設計する。
提案したフレームワークは、MIT-BIH Arrhythmiaデータベースを使用してトレーニングされ、テストされた。
論文 参考訳(メタデータ) (2021-05-26T11:59:44Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - A Raspberry Pi-based Traumatic Brain Injury Detection System for
Single-Channel Electroencephalogram [0.6282171844772422]
外傷性脳損傷の診断のための既存のツールは、主観的または広範な臨床設定と専門知識を必要とする。
本稿では,機械学習を用いてtbiを効率的に識別するraspberry piベースのポータブル,リアルタイムデータ取得,自動処理システムについて述べる。
ピーク分類精度は最大90%以上であり, TBIと制御条件の比較では, 16秒から64秒までの分類時間が1秒未満である。
論文 参考訳(メタデータ) (2021-01-23T09:49:33Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) はユーザとシステム間の強力なコミュニケーションツールである。
近年の技術進歩は、脳波(EEG)に基づく翻訳医療用BCIへの関心が高まっている。
論文 参考訳(メタデータ) (2020-01-28T10:36:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。