A Geometric Perspective for High-Dimensional Multiplex Graphs
- URL: http://arxiv.org/abs/2501.17374v1
- Date: Wed, 29 Jan 2025 02:02:37 GMT
- Title: A Geometric Perspective for High-Dimensional Multiplex Graphs
- Authors: Kamel Abdous, Nairouz Mrabah, Mohamed Bouguessa,
- Abstract summary: We study the problem of high-dimensional multiplex graph embedding from a geometric perspective.
We propose a novel multiplex graph embedding method that harnesses hierarchical dimension embedding and Hyperbolic Graph Neural Networks.
Experimental results on real-world high-dimensional multiplex graphs show that the synergy between hierarchical and hyperbolic embeddings incurs much fewer geometric distortions.
- Score: 6.4696661970122085
- License:
- Abstract: High-dimensional multiplex graphs are characterized by their high number of complementary and divergent dimensions. The existence of multiple hierarchical latent relations between the graph dimensions poses significant challenges to embedding methods. In particular, the geometric distortions that might occur in the representational space have been overlooked in the literature. This work studies the problem of high-dimensional multiplex graph embedding from a geometric perspective. We find that the node representations reside on highly curved manifolds, thus rendering their exploitation more challenging for downstream tasks. Moreover, our study reveals that increasing the number of graph dimensions can cause further distortions to the highly curved manifolds. To address this problem, we propose a novel multiplex graph embedding method that harnesses hierarchical dimension embedding and Hyperbolic Graph Neural Networks. The proposed approach hierarchically extracts hyperbolic node representations that reside on Riemannian manifolds while gradually learning fewer and more expressive latent dimensions of the multiplex graph. Experimental results on real-world high-dimensional multiplex graphs show that the synergy between hierarchical and hyperbolic embeddings incurs much fewer geometric distortions and brings notable improvements over state-of-the-art approaches on downstream tasks.
Related papers
- Weighted Embeddings for Low-Dimensional Graph Representation [0.13499500088995461]
We propose embedding a graph into a weighted space, which is closely related to hyperbolic geometry but mathematically simpler.
We show that our weighted embeddings heavily outperform state-of-the-art Euclidean embeddings for heterogeneous graphs while using fewer dimensions.
arXiv Detail & Related papers (2024-10-08T13:41:03Z) - Hierarchical Aggregations for High-Dimensional Multiplex Graph Embedding [7.271256448682229]
HMGE is a novel embedding method based on hierarchical aggregation for high-dimensional multiplex graphs.
We leverage mutual information between local patches and global summaries to train the model without supervision.
Detailed experiments on synthetic and real-world data illustrate the suitability of our approach to downstream supervised tasks.
arXiv Detail & Related papers (2023-12-28T05:39:33Z) - Alignment and Outer Shell Isotropy for Hyperbolic Graph Contrastive
Learning [69.6810940330906]
We propose a novel contrastive learning framework to learn high-quality graph embedding.
Specifically, we design the alignment metric that effectively captures the hierarchical data-invariant information.
We show that in the hyperbolic space one has to address the leaf- and height-level uniformity which are related to properties of trees.
arXiv Detail & Related papers (2023-10-27T15:31:42Z) - Contrastive Graph Clustering in Curvature Spaces [74.03252813800334]
We present a novel end-to-end contrastive graph clustering model named CONGREGATE.
To support geometric clustering, we construct a theoretically grounded Heterogeneous Curvature Space.
We then train the graph clusters by an augmentation-free reweighted contrastive approach.
arXiv Detail & Related papers (2023-05-05T14:04:52Z) - FMGNN: Fused Manifold Graph Neural Network [102.61136611255593]
Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks.
We propose the Fused Manifold Graph Neural Network (NN), a novel GNN architecture that embeds graphs into different Manifolds during training.
Our experiments demonstrate that NN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.
arXiv Detail & Related papers (2023-04-03T15:38:53Z) - Hyperbolic Graph Representation Learning: A Tutorial [39.25873010585029]
This tutorial aims to give an introduction to this emerging field of graph representation learning with the express purpose of being accessible to all audiences.
We first give a brief introduction to graph representation learning as well as some preliminaryian and hyperbolic geometry.
We then comprehensively revisit the technical details of the current hyperbolic graph neural networks by unifying them into a general framework.
arXiv Detail & Related papers (2022-11-08T07:15:29Z) - Complex Hyperbolic Knowledge Graph Embeddings with Fast Fourier
Transform [29.205221688430733]
The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks.
Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures.
This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings.
arXiv Detail & Related papers (2022-11-07T15:46:00Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement [55.2456981313287]
We propose a new disentanglement enhancement framework for deep generative models for attributed graphs.
A novel variational objective is proposed to disentangle the above three types of latent factors, with novel architecture for node and edge deconvolutions.
Within each type, individual-factor-wise disentanglement is further enhanced, which is shown to be a generalization of the existing framework for images.
arXiv Detail & Related papers (2020-06-09T16:33:49Z) - Computationally Tractable Riemannian Manifolds for Graph Embeddings [10.420394952839242]
We show how to learn and optimize graph embeddings in certain curved Riemannian spaces.
Our results serve as new evidence for the benefits of non-Euclidean embeddings in machine learning pipelines.
arXiv Detail & Related papers (2020-02-20T10:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.