論文の概要: RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2501.17599v1
- Date: Wed, 29 Jan 2025 12:09:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:39.539140
- Title: RegionGCN: Spatial-Heterogeneity-Aware Graph Convolutional Networks
- Title(参考訳): RegionGCN:空間的不均一性を考慮したグラフ畳み込みネットワーク
- Authors: Hao Guo, Han Wang, Di Zhu, Lun Wu, A. Stewart Fotheringham, Yu Liu,
- Abstract要約: 本研究では,地域レベルでの空間的プロセスの不均一性を個人レベルでではなく,地域レベルでモデル化することを提案する。
本研究では,2016年アメリカ合衆国大統領選挙における郡レベルの投票率の空間的予測に,地域GCNという空間的不均一性を考慮したグラフ畳み込みネットワークを適用した。
- 参考スコア(独自算出の注目度): 8.132751508556078
- License:
- Abstract: Modeling spatial heterogeneity in the data generation process is essential for understanding and predicting geographical phenomena. Despite their prevalence in geospatial tasks, neural network models usually assume spatial stationarity, which could limit their performance in the presence of spatial process heterogeneity. By allowing model parameters to vary over space, several approaches have been proposed to incorporate spatial heterogeneity into neural networks. However, current geographically weighting approaches are ineffective on graph neural networks, yielding no significant improvement in prediction accuracy. We assume the crux lies in the over-fitting risk brought by a large number of local parameters. Accordingly, we propose to model spatial process heterogeneity at the regional level rather than at the individual level, which largely reduces the number of spatially varying parameters. We further develop a heuristic optimization procedure to learn the region partition adaptively in the process of model training. Our proposed spatial-heterogeneity-aware graph convolutional network, named RegionGCN, is applied to the spatial prediction of county-level vote share in the 2016 US presidential election based on socioeconomic attributes. Results show that RegionGCN achieves significant improvement over the basic and geographically weighted GCNs. We also offer an exploratory analysis tool for the spatial variation of non-linear relationships through ensemble learning of regional partitions from RegionGCN. Our work contributes to the practice of Geospatial Artificial Intelligence (GeoAI) in tackling spatial heterogeneity.
- Abstract(参考訳): データ生成過程における空間的不均一性のモデル化は、地理的現象の理解と予測に不可欠である。
空間的タスクの頻度にもかかわらず、ニューラルネットワークモデルは通常、空間的定常性を前提としており、空間的プロセスの不均一性の存在下での性能を制限できる。
モデルパラメータを空間的に変化させることにより、空間的不均一性をニューラルネットワークに組み込むためのいくつかのアプローチが提案されている。
しかし、現在の地理的重み付けアプローチはグラフニューラルネットワークでは効果がなく、予測精度が大幅に向上することはなかった。
この危機は、多くのローカルパラメーターによって引き起こされる過度に適合するリスクにあると仮定する。
そこで本研究では,空間的に変化するパラメータの数を大幅に減らし,地域レベルでの空間過程の不均一性をモデル化することを提案する。
さらに,モデルの学習過程において,領域分割を適応的に学習するためのヒューリスティックな最適化手法を開発した。
本研究では,2016年アメリカ合衆国大統領選挙における郡レベルの投票シェアの空間的予測に,社会経済特性に基づく空間的不均一性を考慮したグラフ畳み込みネットワークであるRereaGCNを適用した。
その結果、RereaGCNは、基本および地理的に重み付けされたGCNよりも大幅に改善されていることがわかった。
また、リージョンGCNからの地域分割のアンサンブル学習を通じて、非線形関係の空間的変動を探索的解析ツールを提供する。
我々の研究は、空間的不均一性に対処するGeoAI(GeoAI)の実践に寄与する。
関連論文リスト
- An Interpretable Implicit-Based Approach for Modeling Local Spatial Effects: A Case Study of Global Gross Primary Productivity [9.352810748734157]
地球科学では、観測されていない要因は非定常分布を示し、特徴と対象の関係が空間的不均一性を示す。
地理的機械学習タスクでは、従来の統計学習手法は空間的不均一性を捉えるのに苦労することが多い。
我々は、深層ニューラルネットワークを用いた空間差と並行して、異なる場所で共通する特徴を同時にモデル化する、新しい視点を提案する。
論文 参考訳(メタデータ) (2025-02-10T05:44:54Z) - Cybercrime Prediction via Geographically Weighted Learning [0.24578723416255752]
地理的緯度と長手点を考慮したグラフニューラルネットワークモデルを提案する。
合成データセットを用いて,サイバーセキュリティの4クラス分類問題にアルゴリズムを適用した。
従来のニューラルネットワークや畳み込みニューラルネットワークよりも精度が高いことを示す。
論文 参考訳(メタデータ) (2024-11-07T11:46:48Z) - SurfGNN: A robust surface-based prediction model with interpretability for coactivation maps of spatial and cortical features [17.457540767016223]
現在の脳表面に基づく予測モデルは、皮質の特徴レベルでの地域属性の変動性を見落としていることが多い。
本研究では,大脳皮質表面メッシュをスパースグラフとみなし,解釈可能な予測モデル-サーフェスグラフニューラルネットワーク(SurfGNN)を提案する。
SurfGNNは、トポロジサンプリング学習(TSL)と地域固有の学習(RSL)構造を用いて、表面メッシュの低スケールと高スケールの両方で個々の皮質の特徴を管理する。
論文 参考訳(メタデータ) (2024-11-05T08:39:53Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Neural networks for geospatial data [0.0]
NN-GLSは、GPモデルの非線形平均に対する新しいニューラルネットワーク推定アルゴリズムである。
NN-GLSはグラフニューラルネットワーク(GNN)の特殊型として表現されていることを示す。
理論的には、NN-GLSは不規則に観測された空間相関データプロセスに一貫性があることが示されている。
論文 参考訳(メタデータ) (2023-04-18T17:52:23Z) - GeoNet: Benchmarking Unsupervised Adaptation across Geographies [71.23141626803287]
地理的ロバスト性の問題について検討し、3つの主要な貢献を行う。
まず,地理的適応のための大規模データセットGeoNetを紹介する。
第2に、シーンコンテキストにおける大きな変化から、ドメインシフトの主な原因が生じるという仮説を立てる。
第3に、最先端の教師なしドメイン適応アルゴリズムとアーキテクチャを広範囲に評価する。
論文 参考訳(メタデータ) (2023-03-27T17:59:34Z) - Semantic Segmentation by Early Region Proxy [53.594035639400616]
本稿では,学習可能な領域のテッセルレーションとしてイメージを解釈することから始まる,新規で効率的なモデリングについて述べる。
領域のコンテキストをモデル化するために,Transformerを用いてシーケンス・ツー・シーケンス方式で領域を符号化する。
現在、符号化された領域埋め込みの上に、領域ごとのセマンティックセグメンテーションを行う。
論文 参考訳(メタデータ) (2022-03-26T10:48:32Z) - Region-Based Semantic Factorization in GANs [67.90498535507106]
本稿では,任意の画像領域についてGAN(Generative Adversarial Networks)が学習した潜在意味を分解するアルゴリズムを提案する。
適切に定義された一般化されたレイリー商を通して、アノテーションや訓練なしにそのような問題を解く。
様々な最先端のGANモデルに対する実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-02-19T17:46:02Z) - Positional Encoder Graph Neural Networks for Geographic Data [1.840220263320992]
グラフニューラルネットワーク(GNN)は、連続空間データをモデリングするための強力でスケーラブルなソリューションを提供する。
本稿では,空間コンテキストと相関関係をモデルに明示的に組み込んだ新しいフレームワークPE-GNNを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:41:49Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
本稿では,グラフ表現の伝播と逆学習を両立させる新しいAdrialversa Graph Representation Adaptation (AGRA) フレームワークを提案する。
提案するAGRAフレームワークは,従来の最先端手法よりも優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-08-03T13:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。