論文の概要: Drivetrain simulation using variational autoencoders
- arxiv url: http://arxiv.org/abs/2501.17653v1
- Date: Wed, 29 Jan 2025 13:37:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:52.825205
- Title: Drivetrain simulation using variational autoencoders
- Title(参考訳): 変分オートエンコーダを用いたドライブトレインシミュレーション
- Authors: Pallavi Sharma, Jorge-Humberto Urrea-Quintero, Bogdan Bogdan, Adrian-Dumitru Ciotec, Laura Vasilie, Henning Wessels, Matteo Skull,
- Abstract要約: 本研究は、所定のトルク要求から車両のジャークを予測するための変分オートエンコーダ(VAE)を提案する。
我々は、異なるドライブトレインシナリオの機能を統合したジャーク信号を生成するために、無条件および条件付きVAEを実装している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work proposes variational autoencoders (VAEs) to predict a vehicle's jerk from a given torque demand, addressing the limitations of sparse real-world datasets. Specifically, we implement unconditional and conditional VAEs to generate jerk signals that integrate features from different drivetrain scenarios. The VAEs are trained on experimental data collected from two variants of a fully electric SUV, which differ in maximum torque delivery and drivetrain configuration. New meaningful jerk signals are generated within an engineering context through the interpretation of the VAE's latent space. A performance comparison with baseline physics-based and hybrid models confirms the effectiveness of the VAEs. We show that VAEs bypass the need for exhaustive manual system parametrization while maintaining physical plausibility by conditioning data generation on specific inputs.
- Abstract(参考訳): この研究は、与えられたトルク要求から車両のジャークを予測するための変分オートエンコーダ(VAE)を提案し、スパースな実世界のデータセットの制限に対処する。
具体的には、異なるドライブトレインシナリオの機能を統合したジャーク信号を生成するために、無条件および条件付きVAEを実装している。
VAEは、最大トルクデリバリーと駆動列車構成が異なる完全電動SUVの2つの変種から収集された実験データに基づいて訓練される。
新しい意味のあるジャーク信号は、VAEの潜伏空間の解釈を通して工学的文脈内で生成される。
ベースライン物理ベースモデルとハイブリッドモデルとの比較により,VAEの有効性が確認された。
VAEは、特定の入力に対してデータ生成を条件づけることにより、物理的妥当性を維持しつつ、徹底的な手作業によるパラメトリゼーションの必要性を回避している。
関連論文リスト
- Gradient-based Trajectory Optimization with Parallelized Differentiable Traffic Simulation [24.95575815501035]
インテリジェントドライバモデル(IDM)に基づく並列化微分可能交通シミュレータを提案する。
我々の車両シミュレーターは、車両の動きを効率的にモデル化し、現実世界のデータに合うように教師できる軌道を生成する。
このシミュレータを用いて、入力軌跡の雑音をフィルタリングし(軌道フィルタリング)、スパース軌跡から高密度軌跡を再構成し(軌道再構成)、将来の軌跡を予測する。
論文 参考訳(メタデータ) (2024-12-21T19:53:38Z) - Purpose in the Machine: Do Traffic Simulators Produce Distributionally
Equivalent Outcomes for Reinforcement Learning Applications? [35.719833726363085]
本研究は,交通アプリケーションのための強化学習(RL)エージェントの訓練によく使用される2つのシミュレータであるCityFlowとSUMOに焦点を当てる。
制御された仮想実験では、運転者の挙動やシミュレーションスケールが、これらのシミュレータからRL関連測度における分布同値性を示す証拠を見出した。
これらの結果は,交通シミュレータはRLトレーニングのデウス・エグゼクティブ・マシンナではないことを示唆している。
論文 参考訳(メタデータ) (2023-11-14T01:05:14Z) - Optimizing Non-Autoregressive Transformers with Contrastive Learning [74.46714706658517]
非自己回帰変換器(NAT)は、逐次順序ではなく全ての単語を同時に予測することにより、自動回帰変換器(AT)の推論遅延を低減する。
本稿では,データ分布ではなく,モデル分布からのサンプリングによるモダリティ学習の容易化を提案する。
論文 参考訳(メタデータ) (2023-05-23T04:20:13Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Recurrence Boosts Diversity! Revisiting Recurrent Latent Variable in
Transformer-Based Variational AutoEncoder for Diverse Text Generation [85.5379146125199]
変分自動エンコーダ(VAE)はテキスト生成において広く採用されている。
本稿ではトランスフォーマーをベースとしたリカレントVAE構造であるTRACEを提案する。
論文 参考訳(メタデータ) (2022-10-22T10:25:35Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
そこで我々はParaformerと呼ばれる高速かつ高精度な並列トランスを提案する。
出力トークンの数を正確に予測し、隠れた変数を抽出する。
10倍以上のスピードアップで、最先端のARトランスフォーマーに匹敵するパフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2022-06-16T17:24:14Z) - Variational Autoencoder-Based Vehicle Trajectory Prediction with an
Interpretable Latent Space [0.0]
本稿では,車両軌道予測のための教師なし・エンドツーエンドの学習可能なニューラルネットワークであるdescriptive variational autoencoder (dvae)について述べる。
提案モデルは同様の予測精度を提供するが、解釈可能な潜在空間を持つことの利点がある。
論文 参考訳(メタデータ) (2021-03-25T10:15:53Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Self-awareness in intelligent vehicles: Feature based dynamic Bayesian
models for abnormality detection [4.251384905163326]
本稿では,自律走行車における自己認識性向上のための新しい手法を提案する。
車両からの時系列データは、データ駆動型動的ベイズネットワーク(DBN)モデルの開発に使用される。
協調作業における共同異常検出が可能な初期レベル集団認識モデルを提案する。
論文 参考訳(メタデータ) (2020-10-29T09:29:47Z) - Simple and Effective VAE Training with Calibrated Decoders [123.08908889310258]
変分オートエンコーダ(VAE)は、複雑な分布をモデル化するための効果的で簡単な方法である。
復号分布の不確かさを学習する校正復号器の影響について検討する。
本稿では,一般的なガウス復号器の簡易かつ斬新な修正を提案し,その予測分散を解析的に計算する。
論文 参考訳(メタデータ) (2020-06-23T17:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。