Explainable Artificial Intelligence for identifying profitability predictors in Financial Statements
- URL: http://arxiv.org/abs/2501.17676v1
- Date: Wed, 29 Jan 2025 14:33:23 GMT
- Title: Explainable Artificial Intelligence for identifying profitability predictors in Financial Statements
- Authors: Marco Piazza, Mauro Passacantando, Francesca Magli, Federica Doni, Andrea Amaduzzi, Enza Messina,
- Abstract summary: We apply Machine Learning techniques to raw financial statements data taken from AIDA, a Database comprising Italian listed companies' data from 2013 to 2022.
We present a comparative study of different models and following the European AI regulations, we complement our analysis by applying explainability techniques to the proposed models.
- Score: 0.7067443325368975
- License:
- Abstract: The interconnected nature of the economic variables influencing a firm's performance makes the prediction of a company's earning trend a challenging task. Existing methodologies often rely on simplistic models and financial ratios failing to capture the complexity of interacting influences. In this paper, we apply Machine Learning techniques to raw financial statements data taken from AIDA, a Database comprising Italian listed companies' data from 2013 to 2022. We present a comparative study of different models and following the European AI regulations, we complement our analysis by applying explainability techniques to the proposed models. In particular, we propose adopting an eXplainable Artificial Intelligence method based on Game Theory to identify the most sensitive features and make the result more interpretable.
Related papers
- Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
Machine learning and deep learning have become increasingly prevalent in financial prediction and forecasting tasks.
These models often lack transparency and interpretability, making them challenging to use in sensitive domains like finance.
This paper explores good practices for deploying explainability in AI-based systems for finance.
arXiv Detail & Related papers (2023-11-13T17:56:45Z) - A Comprehensive Review on Financial Explainable AI [29.229196780505532]
We provide a comparative survey of methods that aim to improve the explainability of deep learning models within the context of finance.
We categorize the collection of explainable AI methods according to their corresponding characteristics.
We review the concerns and challenges of adopting explainable AI methods, together with future directions we deemed appropriate and important.
arXiv Detail & Related papers (2023-09-21T10:30:49Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
We present a novel framework, Amplifying Model Performance by Leveraging In-Context Learning with Post Hoc Explanations (AMPLIFY)
We leverage post hoc explanation methods which output attribution scores (explanations) capturing the influence of each of the input features on model predictions.
Our framework, AMPLIFY, leads to prediction accuracy improvements of about 10-25% over a wide range of tasks.
arXiv Detail & Related papers (2023-05-19T04:46:04Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
We develop six distinct model-agnostic metrics designed to quantify the extent to which model predictions can be explained.
These metrics measure different aspects of model explainability, ranging from local importance, global importance, and surrogate predictions.
We demonstrate the practical utility of these metrics on classification and regression tasks, and integrate these metrics into an existing Python package for public use.
arXiv Detail & Related papers (2023-02-23T15:28:36Z) - Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions [0.0]
This paper examines two different yet related questions related to explainable AI (XAI) practices.
The study compares various machine learning models, including single classifiers (logistic regression, decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest), and sequential neural networks.
Two advanced post-hoc model explainability techniques - LIME and SHAP are utilized to assess ML-based credit scoring models.
arXiv Detail & Related papers (2022-09-19T21:44:42Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.