論文の概要: WARP: An Efficient Engine for Multi-Vector Retrieval
- arxiv url: http://arxiv.org/abs/2501.17788v2
- Date: Wed, 30 Apr 2025 08:28:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.237498
- Title: WARP: An Efficient Engine for Multi-Vector Retrieval
- Title(参考訳): WARP: マルチベクトル検索のための効率的なエンジン
- Authors: Jan Luca Scheerer, Matei Zaharia, Christopher Potts, Gustavo Alonso, Omar Khattab,
- Abstract要約: WARPは、XTR目標で訓練された検索者の効率を大幅に改善する検索エンジンである。
本システムでは,XTRの参照実装を41倍に削減し,ColBERTv2/PLAIDエンジンの3倍の高速化を実現している。
- 参考スコア(独自算出の注目度): 42.128201454569165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-vector retrieval methods such as ColBERT and its recent variant, the ConteXtualized Token Retriever (XTR), offer high accuracy but face efficiency challenges at scale. To address this, we present WARP, a retrieval engine that substantially improves the efficiency of retrievers trained with the XTR objective through three key innovations: (1) WARP$_\text{SELECT}$ for dynamic similarity imputation; (2) implicit decompression, avoiding costly vector reconstruction during retrieval; and (3) a two-stage reduction process for efficient score aggregation. Combined with highly-optimized C++ kernels, our system reduces end-to-end latency compared to XTR's reference implementation by 41x, and achieves a 3x speedup over the ColBERTv2/PLAID engine, while preserving retrieval quality.
- Abstract(参考訳): ColBERT や最近の変種である ConteXtualized Token Retriever (XTR) のようなマルチベクター検索手法は、精度は高いが大規模な効率の課題に直面している。
これを解決するために, WARPは, (1) WARP$_\text{SELECT}$ for dynamic similarity imputation, (2) 暗黙の圧縮, (2) 検索時のベクトル再構成の回避, (3) 効率的なスコアアグリゲーションのための2段階の削減プロセスである。
このシステムは,高度に最適化されたC++カーネルと組み合わせることで,XTRの参照実装である41倍のレイテンシを低減し,検索品質を維持しつつ,ColBERTv2/PLAIDエンジンの3倍の高速化を実現している。
関連論文リスト
- MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings [15.275864151890511]
マルチベクトル探索を単一ベクトル類似性探索に還元する検索機構であるMUVERA(MUlti-VEctor Retrieval Algorithm)を導入する。
MUVERAはBEIR検索データセットの多種多様なセットに対して、一貫して優れたエンドツーエンドのリコールとレイテンシを実現する。
論文 参考訳(メタデータ) (2024-05-29T20:40:20Z) - Constructing Tree-based Index for Efficient and Effective Dense
Retrieval [26.706985694158384]
JTRは、TReeベースのインデックスとクエリエンコーディングの合同最適化の略である。
我々は、木に基づくインデックスとクエリエンコーダをエンドツーエンドにトレーニングするために、新しい統合されたコントラスト学習損失を設計する。
実験結果から,JTRは高いシステム効率を維持しつつ,検索性能が向上することが示された。
論文 参考訳(メタデータ) (2023-04-24T09:25:39Z) - CITADEL: Conditional Token Interaction via Dynamic Lexical Routing for
Efficient and Effective Multi-Vector Retrieval [72.90850213615427]
マルチベクター検索法はスパース(例えばBM25)と高密度(例えばDPR)レトリバーの利点を組み合わせたものである。
これらの手法は桁違いに遅く、単ベクトルの手法に比べてインデックスを格納するのにはるかに多くのスペースを必要とする。
動的語彙ルーティング(CITADEL)による条件付きトークンの相互作用を,効率的かつ効率的なマルチベクタ検索のために提案する。
論文 参考訳(メタデータ) (2022-11-18T18:27:35Z) - Hyperbolic Cosine Transformer for LiDAR 3D Object Detection [6.2216654973540795]
我々は,LiDAR点雲から3次元物体を検出するための2段階双曲型コサイントランス (ChTR3D) を提案する。
提案したChTR3Dは、線形複雑性におけるコッシュアテンションを適用して、点間のリッチな文脈関係を符号化することで、提案を洗練する。
広く使用されているKITTIデータセットの実験では、バニラアテンションと比較して、コッシュアテンションは競合性能による推論速度を大幅に改善することが示された。
論文 参考訳(メタデータ) (2022-11-10T13:54:49Z) - Pair DETR: Contrastive Learning Speeds Up DETR Training [0.6491645162078056]
本稿では、DreTRの主な問題である緩やかな収束に対処するための簡単なアプローチを提案する。
2つのデコーダを用いて、一対のキーポイント、左上隅、中央としてオブジェクト境界ボックスを検出する。
実験により、Pair DETRは元のDETRより少なくとも10倍早く収束し、トレーニング中にConditional DETRより1.5倍速く収束できることが示された。
論文 参考訳(メタデータ) (2022-10-29T03:02:49Z) - Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix
Factorization [60.91600465922932]
本稿では,クロスエンコーダのみに頼って,二重エンコーダによる検索を回避する手法を提案する。
我々のアプローチは、現在の広く使われている方法よりも優れたテスト時間リコール-vs計算コストトレードオフを提供する。
論文 参考訳(メタデータ) (2022-10-23T00:32:04Z) - A Fast Post-Training Pruning Framework for Transformers [74.59556951906468]
プルーニングは、大きなTransformerモデルの巨大な推論コストを削減する効果的な方法である。
モデルプルーニングの以前の作業では、モデルの再トレーニングが必要だった。
本稿では,再学習を必要としないトランスフォーマーのための高速な訓練後プルーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T07:41:11Z) - Sparse DETR: Efficient End-to-End Object Detection with Learnable
Sparsity [10.098578160958946]
我々は,COCOデータセット上に10%エンコーダトークンしか持たなくても,Sparse DETRがDeformable DETRよりも優れた性能を実現することを示す。
エンコーダトークンだけがスペーサー化され、総計算コストは38%減少し、フレーム/秒(FPS)はDeformable DETRに比べて42%増加する。
論文 参考訳(メタデータ) (2021-11-29T05:22:46Z) - CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization [61.71504948770445]
本稿では,CATRO (Class-Aware Trace Ratio Optimization) を用いた新しいチャネルプルーニング手法を提案する。
CATROは、他の最先端チャネルプルーニングアルゴリズムと同等の精度で、同様のコストまたは低コストで高い精度を達成できることを示す。
CATROは、クラス認識の特性のため、様々な分類サブタスクに適応的に効率の良いネットワークを創り出すのに適している。
論文 参考訳(メタデータ) (2021-10-21T06:26:31Z) - HANT: Hardware-Aware Network Transformation [82.54824188745887]
ハードウェア・アウェア・ネットワーク・トランスフォーメーション(HANT)を提案する。
HANTは、ニューラルネットワーク検索のようなアプローチを使用して、非効率な操作をより効率的な代替手段に置き換える。
EfficientNetファミリの高速化に関する我々の結果は、ImageNetデータセットのトップ1の精度で最大3.6倍、0.4%の低下でHANTがそれらを加速できることを示している。
論文 参考訳(メタデータ) (2021-07-12T18:46:34Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
本稿では,高効率単一画像超解像(SR)のための3レベルニューラルネットワーク探索法を提案する。
離散探索空間をモデル化するために、離散探索空間に新たな連続緩和を適用し、ネットワークパス、セル操作、カーネル幅の階層的混合を構築する。
階層型スーパーネット方式による最適化を行うため,効率的な探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-17T12:19:49Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。