論文の概要: SSF: Sparse Long-Range Scene Flow for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2501.17821v1
- Date: Wed, 29 Jan 2025 18:14:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:53:54.441779
- Title: SSF: Sparse Long-Range Scene Flow for Autonomous Driving
- Title(参考訳): SSF: 自律走行のためのスパースロングランジシーンフロー
- Authors: Ajinkya Khoche, Qingwen Zhang, Laura Pereira Sanchez, Aron Asefaw, Sina Sharif Mansouri, Patric Jensfelt,
- Abstract要約: 特徴抽出にスパース畳み込みに基づくバックボーンを用いた長距離シーンフローのための汎用パイプラインを提案する。
提案手法であるSSFはArgoverse2データセットの最先端化を実現し,長距離シーンフロー推定において高い性能を示す。
- 参考スコア(独自算出の注目度): 4.685658373164552
- License:
- Abstract: Scene flow enables an understanding of the motion characteristics of the environment in the 3D world. It gains particular significance in the long-range, where object-based perception methods might fail due to sparse observations far away. Although significant advancements have been made in scene flow pipelines to handle large-scale point clouds, a gap remains in scalability with respect to long-range. We attribute this limitation to the common design choice of using dense feature grids, which scale quadratically with range. In this paper, we propose Sparse Scene Flow (SSF), a general pipeline for long-range scene flow, adopting a sparse convolution based backbone for feature extraction. This approach introduces a new challenge: a mismatch in size and ordering of sparse feature maps between time-sequential point scans. To address this, we propose a sparse feature fusion scheme, that augments the feature maps with virtual voxels at missing locations. Additionally, we propose a range-wise metric that implicitly gives greater importance to faraway points. Our method, SSF, achieves state-of-the-art results on the Argoverse2 dataset, demonstrating strong performance in long-range scene flow estimation. Our code will be released at https://github.com/KTH-RPL/SSF.git.
- Abstract(参考訳): シーンフローは3次元世界における環境の運動特性の理解を可能にする。
遠方の観察によって物体に基づく知覚法が失敗する可能性のある長距離において、特に重要となる。
大規模なポイントクラウドを扱うためのシーンフローパイプラインでは大きな進歩があったが、長期にわたるスケーラビリティのギャップは依然として残っている。
この制限は、高密度な特徴グリッドを使用する場合の一般的な設計選択によるもので、範囲に応じて2次にスケールする。
本稿では,スパース・シーン・フロー(SSF)を提案する。これは長距離シーン・フローの一般的なパイプラインであり,スパース・コンボリューションをベースとしたバックボーンを用いて特徴抽出を行う。
このアプローチでは、時間系列のポイントスキャン間のスパース機能マップのサイズと順序のミスマッチという、新しい課題が紹介されている。
そこで本研究では,機能マップを仮想ボクセルで拡張する,スパース機能融合方式を提案する。
さらに、遠方点に対して暗黙的により重要となる範囲ワイド計量を提案する。
提案手法であるSSFはArgoverse2データセットの最先端化を実現し,長距離シーンフロー推定において高い性能を示す。
私たちのコードはhttps://github.com/KTH-RPL/SSF.git.comでリリースされます。
関連論文リスト
- DeFlow: Decoder of Scene Flow Network in Autonomous Driving [19.486167661795797]
シーンフロー推定は、シーン内のポイントの運動を予測することによって、シーンの3次元運動場を決定する。
入力として大規模な点雲を持つ多くのネットワークは、リアルタイム実行のための擬似イメージを作成するためにボキセル化を使用する。
本稿では, Gated Recurrent Unit (GRU) の改良により, ボクセルをベースとした特徴から点への遷移を可能にするDeFlowを紹介した。
論文 参考訳(メタデータ) (2024-01-29T12:47:55Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
時間的3次元物体検出を効率的に行うために,長期記憶が可能な点トラジェクトリ変換器を提案する。
私たちは、メモリバンクのストレージ要件を最小限に抑えるために、現在のフレームオブジェクトのポイントクラウドとその履歴トラジェクトリを入力として使用します。
大規模データセットに対する広範な実験を行い、我々のアプローチが最先端の手法に対してうまく機能することを実証した。
論文 参考訳(メタデータ) (2023-12-13T18:59:13Z) - GMSF: Global Matching Scene Flow [17.077134204089536]
我々は点雲からのシーンフロー推定の課題に取り組む。
ソースとターゲットポイントクラウドが与えられた場合、目的はソースポイントクラウドの各ポイントからターゲットへの変換を推定することである。
そこで本研究では,この問題に対処するため,より単純なワンショット・ワンショット・グローバルマッチングを提案する。
論文 参考訳(メタデータ) (2023-05-27T10:04:21Z) - Super Sparse 3D Object Detection [48.684300007948906]
LiDARベースの3Dオブジェクト検出は、自動運転における長距離認識にますます貢献する。
高速な長距離検出を実現するため,まずフルスパース物体検出器FSDを提案する。
FSD++は、連続するフレーム間の点変化を示す残差点を生成する。
論文 参考訳(メタデータ) (2023-01-05T17:03:56Z) - Temporal Action Localization with Multi-temporal Scales [54.69057924183867]
マルチ時間スケールの特徴空間における行動を予測することを提案する。
具体的には、異なるスケールの洗練された特徴ピラミッドを使用して、高レベルのスケールから低レベルのスケールにセマンティクスを渡す。
提案手法は, それぞれ12.6%, 17.4%, 2.2%の改善を達成できる。
論文 参考訳(メタデータ) (2022-08-16T01:48:23Z) - Stratified Transformer for 3D Point Cloud Segmentation [89.9698499437732]
Stratified Transformerは、長距離コンテキストをキャプチャし、強力な一般化能力と高性能を示す。
不規則な点配置によって引き起こされる課題に対処するために,局所情報を集約する第1層点埋め込みを提案する。
S3DIS, ScanNetv2およびShapeNetPartデータセットにおける本手法の有効性と優位性を示す実験を行った。
論文 参考訳(メタデータ) (2022-03-28T05:35:16Z) - POCO: Point Convolution for Surface Reconstruction [92.22371813519003]
入射ニューラルネットワークは点雲からの表面再構成に成功している。
それらの多くは、オブジェクトやシーン全体を1つの潜伏ベクトルにエンコードするときにスケーラビリティの問題に直面します。
本稿では,各入力点における点雲畳み込みと潜在ベクトルの計算を提案する。
論文 参考訳(メタデータ) (2022-01-05T21:26:18Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
点雲は非秩序であり、その密度は著しく一様ではないため、点雲の3次元運動の推定は困難である。
本稿では,sparse convolution-transformer network (sctn) という新しいアーキテクチャを提案する。
学習した関係に基づく文脈情報が豊富で,対応点の一致に役立ち,シーンフローの推定に有効であることを示す。
論文 参考訳(メタデータ) (2021-05-10T15:16:14Z) - FESTA: Flow Estimation via Spatial-Temporal Attention for Scene Point
Clouds [28.899804787744202]
シーンフローは、自律運転、ロボットナビゲーション、AR/VRなど、さまざまなアプリケーションにとって重要な3Dシーンのダイナミクスを描いている。
典型的な点雲サンプリングパターンのばらつきと不規則さのため、点雲からシーンフローを抽出することは依然として困難である。
不安定な抽象問題を軽減するために, 注意を伴う空間抽象(SA2)層を提案する。
a temporal abstraction with attention (ta2) layer は、時間領域における注意を正すために提案され、より広い範囲でスケールされた動きの利点をもたらす。
論文 参考訳(メタデータ) (2021-04-01T23:04:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。