論文の概要: UGSim: Autonomous Buoyancy-Driven Underwater Glider Simulator with LQR Control Strategy and Recursive Guidance System
- arxiv url: http://arxiv.org/abs/2501.17851v1
- Date: Wed, 29 Jan 2025 18:50:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:17.075045
- Title: UGSim: Autonomous Buoyancy-Driven Underwater Glider Simulator with LQR Control Strategy and Recursive Guidance System
- Title(参考訳): UGSim: LQR制御と再帰誘導システムを備えた自律浮力駆動型水中グライダーシミュレータ
- Authors: Zhizun Xu, Yang Song, Jiabao Zhu, Weichao Shi,
- Abstract要約: 本稿では,浮力駆動グライダーのシミュレータであるUGSimについて述べる。
浮力駆動グライダーに対する複雑な流体力学と静水圧の影響から生じる、ユニークな課題に対処するために設計された。
シミュレーターは、海における高価な時間を要するアルゴリズムの開発と評価を加速するために提供される。
- 参考スコア(独自算出の注目度): 3.8632181427836945
- License:
- Abstract: This paper presents the UGSim, a simulator for buoyancy-driven gliders, with a LQR control strategy, and a recursive guidance system. Building on the top of the DAVE and the UUVsim, it is designed to address unique challenges that come from the complex hydrodynamic and hydrostatic impacts on buoyancy-driven gliders, which conventional robotics simulators can't deal with. Since distinguishing features of the class of vehicles, general controllers and guidance systems developed for underwater robotics are infeasible. The simulator is provided to accelerate the development and the evaluation of algorithms that would otherwise require expensive and time-consuming operations at sea. It consists of a basic kinetic module, a LQR control module and a recursive guidance module, which allows the user to concentrate on the single problem rather than the whole robotics system and the software infrastructure. We demonstrate the usage of the simulator through an example, loading the configuration of the buoyancy-driven glider named Petrel-II, presenting its dynamics simulation, performances of the control strategy and the guidance system.
- Abstract(参考訳): 本稿では,浮力駆動グライダーのシミュレータであるUGSimについて,LQR制御戦略と再帰誘導システムを提案する。
DAVEとUUVsimの上に構築されているこのロボットは、従来のロボットシミュレータでは扱えない浮力駆動グライダーに複雑な流体力学と静水圧の影響から生じる、ユニークな課題に対処するように設計されています。
車両のクラスの特徴を区別するため、水中ロボティクス用に開発された一般的な制御装置や誘導システムは実現不可能である。
シミュレーターは、海における高価な時間を要するアルゴリズムの開発と評価を加速するために提供される。
基本的な運動モジュール、LQRコントロールモジュール、再帰的なガイダンスモジュールで構成されており、ユーザーはロボットシステム全体やソフトウェアインフラよりも単一の問題に集中することができる。
本稿では, ペテルIIという浮力駆動グライダーの構成をロードし, その力学シミュレーション, 制御戦略の性能, 誘導システムについて, シミュレータの使用例を示す。
関連論文リスト
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Reinforcement-learning robotic sailboats: simulator and preliminary
results [0.37918614538294315]
この研究は、無人表面車両(USV)デジタルツインを用いた実実験を再現する仮想海洋環境の開発における主な課題と課題に焦点を当てる。
本稿では、自律的なナビゲーションと制御のために強化学習(RL)エージェントを利用することを考慮し、仮想世界を構築するための重要な機能を紹介する。
論文 参考訳(メタデータ) (2024-01-16T09:04:05Z) - Learning to Fly in Seconds [7.259696592534715]
カリキュラム学習と高度に最適化されたシミュレータが,サンプルの複雑さを増し,学習時間の短縮につながることを示す。
我々のフレームワークは、コンシューマ級ラップトップで18秒のトレーニングをした後、直接制御するためのSimulation-to-Real(Sim2Real)転送を可能にする。
論文 参考訳(メタデータ) (2023-11-22T01:06:45Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Residual Physics Learning and System Identification for Sim-to-real
Transfer of Policies on Buoyancy Assisted Legged Robots [14.760426243769308]
本研究では,BALLUロボットのシステム識別による制御ポリシのロバストなシミュレートを実演する。
標準的な教師あり学習の定式化に頼るのではなく、深層強化学習を利用して外部力政策を訓練する。
シミュレーショントラジェクトリと実世界のトラジェクトリを比較することで,改良されたシミュレーション忠実度を解析する。
論文 参考訳(メタデータ) (2023-03-16T18:49:05Z) - A Hybrid Tracking Control Strategy for an Unmanned Underwater Vehicle
Aided with Bioinspired Neural Dynamics [14.66072990853587]
本稿では,バイオインスパイアされたニューラルダイナミクスモデルに基づく無人水中車両(UUV)のハイブリッド制御手法を提案する。
急激な速度ジャンプを回避し、スムーズな速度コマンドを提供するため、バックステッピング・キネマティック・コントロール・ストラテジーを改良した。
そこで,スムーズかつ連続的なトルク制御が可能なスライディングモード制御を提案する。
論文 参考訳(メタデータ) (2022-09-03T19:18:54Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
本稿では,シミュレーション都市環境における自律走行車両のナビゲーション設計について述べる。
我々のアーキテクチャは、CARLA Autonomous Driving Challengeの要件を満たすために作られました。
論文 参考訳(メタデータ) (2020-10-23T18:07:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。