論文の概要: The Right to AI
- arxiv url: http://arxiv.org/abs/2501.17899v1
- Date: Wed, 29 Jan 2025 04:32:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:15:37.441012
- Title: The Right to AI
- Title(参考訳): AIの権利
- Authors: Rashid Mushkani, Hugo Berard, Allison Cohen, Shin Koeski,
- Abstract要約: 本稿では、個人やコミュニティが生活を形成するAIシステムの開発とガバナンスに有意義に参画すべきであると主張するAIの権利を提案する。
我々は、生成エージェント、大規模データ抽出、そして多様な文化的価値が、AIの監視に新しい複雑さをもたらすかを批判的に評価する。
- 参考スコア(独自算出の注目度): 3.2132738637761027
- License:
- Abstract: This paper proposes a Right to AI, which asserts that individuals and communities should meaningfully participate in the development and governance of the AI systems that shape their lives. Motivated by the increasing deployment of AI in critical domains and inspired by Henri Lefebvre's concept of the Right to the City, we reconceptualize AI as a societal infrastructure, rather than merely a product of expert design. In this paper, we critically evaluate how generative agents, large-scale data extraction, and diverse cultural values bring new complexities to AI oversight. The paper proposes that grassroots participatory methodologies can mitigate biased outcomes and enhance social responsiveness. It asserts that data is socially produced and should be managed and owned collectively. Drawing on Sherry Arnstein's Ladder of Citizen Participation and analyzing nine case studies, the paper develops a four-tier model for the Right to AI that situates the current paradigm and envisions an aspirational future. It proposes recommendations for inclusive data ownership, transparent design processes, and stakeholder-driven oversight. We also discuss market-led and state-centric alternatives and argue that participatory approaches offer a better balance between technical efficiency and democratic legitimacy.
- Abstract(参考訳): 本稿では、個人やコミュニティが生活を形成するAIシステムの開発とガバナンスに有意義に参画すべきであると主張するAIの権利を提案する。
重要なドメインへのAIの展開の増加と、Henri Lefebvre氏の"The Right to the City"の概念に触発された私たちは、AIを単に専門家設計の産物ではなく、社会的インフラストラクチャとして再認識するのです。
本稿では, 生成エージェント, 大規模データ抽出, 多様な文化的価値が, どのようにAIの監視に新たな複雑さをもたらすかを批判的に評価する。
本稿では,草の根参加手法が偏りを緩和し,社会的応答性を高めることを提案する。
データは社会的に生成され、集合的に管理され、所有されるべきである、と同社は主張する。
シェリー・アーンスタイン(Sherry Arnstein)の市民参加ラダー(Ladder of Citizen Participation)を参考に、9つのケーススタディを分析して、現在のパラダイムを具現化し、願望的な未来を想定する、Right to AIのための4層モデルを開発した。
包括的データ所有、透過的な設計プロセス、利害関係者主導の監視の推奨を提案している。
市場主導の代替案や州中心の代替案についても議論し、参加型アプローチは技術的効率と民主的正当性とのバランスを良くすると主張している。
関連論文リスト
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Exploiting the Margin: How Capitalism Fuels AI at the Expense of Minoritized Groups [0.0]
本稿では、資本主義、人種的不正、人工知能(AI)の関係について考察する。
それは、AIが時代遅れの搾取のための現代的な乗り物として機能する、と論じている。
本論文は、社会正義と株式を技術デザインと政策の核心に組み込むアプローチを推進している。
論文 参考訳(メタデータ) (2024-03-10T22:40:07Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Evaluating and Improving Value Judgments in AI: A Scenario-Based Study
on Large Language Models' Depiction of Social Conventions [5.457150493905063]
我々は,現代のAIサービスがユーザニーズにどのように対応しているかを評価し,さらに,大規模言語モデルによって反映された社会の描写を考察した。
本稿では,今後の機械的価値判断に応用可能な,価値調和シナリオにおける意思決定モデルを提案する。
本稿では,他の遠隔地を調査するためのツールとしてAIを利用する実践的アプローチを提唱する。
論文 参考訳(メタデータ) (2023-10-04T08:42:02Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
Google MapsやLarge Language Models (LLM)のような技術ツールは、しばしば公平で客観的であると見なされる。
我々は、クリミア、ウェストバンク、トランスニトリアの3つの論争領域の事例を、ウィキペディアの情報と国連の決議に対するChatGPTの反応を比較して強調する。
論文 参考訳(メタデータ) (2023-03-17T08:46:49Z) - FATE in AI: Towards Algorithmic Inclusivity and Accessibility [0.0]
AIにおけるアルゴリズム上の格差、公平性、説明責任、透明性、倫理(FATE)が実装されている。
本研究では、AIによって守られている世界南部地域のFATE関連デシダータ、特に透明性と倫理について検討する。
インクリシティを促進するために、コミュニティ主導の戦略が提案され、責任あるAI設計のための代表データを収集し、キュレートする。
論文 参考訳(メタデータ) (2023-01-03T15:08:10Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Designing for Human Rights in AI [0.0]
AIシステムは、エビデンス駆動で効率的な決定を下すのに役立ちます。
これらの技術開発が人々の基本的人権と一致していることは明らかになっている。
これらの複雑な社会倫理問題に対する技術的な解決策は、しばしば社会的文脈の実証的研究なしで開発される。
論文 参考訳(メタデータ) (2020-05-11T09:21:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。