Engineering of Anyons on M5-Probes via Flux Quantization
- URL: http://arxiv.org/abs/2501.17927v1
- Date: Wed, 29 Jan 2025 19:00:04 GMT
- Title: Engineering of Anyons on M5-Probes via Flux Quantization
- Authors: Hisham Sati, Urs Schreiber,
- Abstract summary: We develop a novel derivation of anyonic topological order on single magnetized M5-branes.
The rigorous construction is non-Lagrangian and non-perturbative.
Results imply from this the quantum observables and modular functor of abelian Chern-Simons theory.
- Score: 0.0
- License:
- Abstract: These extended lecture notes survey a novel derivation of anyonic topological order (as seen in fractional quantum Hall systems) on single magnetized M5-branes probing Seifert orbi-singularities ("geometric engineering" of anyons), which we motivate from fundamental open problems in the field of quantum computing. The rigorous construction is non-Lagrangian and non-perturbative, based on previously neglected global completion of the M5-brane's tensor field by flux-quantization consistent with its non-linear self-duality and its twisting by the bulk C-field. This exists only in little-studied non-abelian generalized cohomology theories, notably in a twisted equivariant (and "twistorial") form of unstable Cohomotopy ("Hypothesis H"). As a result, topological quantum observables form Pontrjagin homology algebras of mapping spaces from the orbi-fixed worldvolume into a classifying 2-sphere. Remarkably, results from algebraic topology imply from this the quantum observables and modular functor of abelian Chern-Simons theory, as well as braid group actions on defect anyons of the kind envisioned as hardware for topologically protected quantum gates.
Related papers
- Anyons on M5-Probes of Seifert 3-Orbifolds via Flux Quantization [0.0]
There is a rigorous derivation of (abelian) anyonic quantum states, hence of "topological order", on the 1+2-dimensional fixed locus of M5-probes wrapped over a trivially Seifert-fibered 3-orbifold singularity.
This is possible after globally completing the "self-dual" tensor field on probe M5-branes by flux quantization in the non-abelian cohomology theory called equivariant twistorial Cohomotopy.
arXiv Detail & Related papers (2024-11-25T19:00:03Z) - Topological QBits in Flux-Quantized Super-Gravity [0.0]
We give a brief exposition of our recent realization of anyonic quantum states on single M5-brane probes in 11D super-gravity backgrounds.
We end with some more meta-physical remarks on (cohesive) homotopy (type) theory in view of emergent fundamental physics and, possibly, M-theory.
arXiv Detail & Related papers (2024-11-01T14:37:12Z) - Abelian Anyons on Flux-Quantized M5-Branes [0.0]
We present a derivation of abelian anyon quantum states on M5$perp$MO9-branes ("open M5-branes") on the discrete light cone.
The main step in the proof uses a theorem of Okuyama to identify co-Homotopy moduli spaces with configuration spaces of strings with charged endpoints.
arXiv Detail & Related papers (2024-08-21T18:00:02Z) - A Universal Kinematical Group for Quantum Mechanics [0.0]
In 1968, Dashen and Sharp obtained a certain singular Lie algebra of local densities and currents from canonical commutation relations in nonrelativistic quantum field theory.
The corresponding Lie group is infinite dimensional: the natural semidirect product of an additive group of scalar functions with a group of diffeomorphisms.
arXiv Detail & Related papers (2024-04-28T18:46:24Z) - Non-adiabatic holonomies as photonic quantum gates [36.136619420474766]
We present the quantum-optical realization of non-adiabatic holonomies that can be used as single-qubit quantum gates.
The inherent non-adiabaticity of the structures paves the way for unprecedented miniaturization.
arXiv Detail & Related papers (2024-01-08T16:44:45Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Towards a complete classification of non-chiral topological phases in 2D fermion systems [29.799668287091883]
We argue that all non-chiral fermionic topological phases in 2+1D are characterized by a set of tensors $(Nij_k,Fij_k,Fijm,alphabeta_kln,chidelta,n_i,d_i)$.
Several examples with q-type anyon excitations are discussed, including the Fermionic topological phase from Tambara-gami category for $mathbbZ_2N$.
arXiv Detail & Related papers (2021-12-12T03:00:54Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Particle on the sphere: group-theoretic quantization in the presence of
a magnetic monopole [0.0]
We consider the problem of quantizing a particle on a 2-sphere.
We construct the Hilbert space directly from the symmetry algebra.
We show how the Casimir invariants of the algebra determine the bundle topology.
arXiv Detail & Related papers (2020-11-10T04:42:08Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.