Neutrino mixing and oscillations in quantum field theory: a
comprehensive introduction
- URL: http://arxiv.org/abs/2111.11809v1
- Date: Tue, 23 Nov 2021 11:51:43 GMT
- Title: Neutrino mixing and oscillations in quantum field theory: a
comprehensive introduction
- Authors: Luca Smaldone, Giuseppe Vitiello
- Abstract summary: We show that the quantum field theoretical framework, where flavor vacuum is defined, permits to give a precise definition of flavor states.
We show that the gauge theory structure underlies the neutrino mixing phenomenon and that there exist entanglement between mixed neutrinos.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review some of the main results of the quantum field theoretical approach
to neutrino mixing and oscillations. We show that the quantum field theoretical
framework, where flavor vacuum is defined, permits to give a precise definition
of flavor states as eigenstates of (non-conserved) lepton charges. We obtain
the exact oscillation formula which in the relativistic limit reproduces the
Pontecorvo oscillation formula and illustrate some of the contradictions
arising in the quantum mechanics approximation. We show that the gauge theory
structure underlies the neutrino mixing phenomenon and that there exist
entanglement between mixed neutrinos. The flavor vacuum is found to be an
entangled generalized coherent state of SU(2). We also discuss flavor energy
uncertainty relations, which imposes a lower bound on the precision of neutrino
energy measurements and we show that the flavor vacuum inescapably emerges in
certain classes of models with dynamical symmetry breaking.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum field theory for multipolar composite bosons with mass defect and relativistic corrections [0.10686401485328585]
We present a subspace effective field theory for interacting, spin carrying, and possibly charged ensembles of atoms composed of nucleus and electron.
We obtain a relativistic coupling between the coboson's center-of-mass motion and internal structure encoded by the mass defect.
arXiv Detail & Related papers (2023-07-12T12:35:27Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Light-shift induced behaviors observed in momentum-space quantum walks [47.187609203210705]
We present a theoretical model which proves that the coherent dynamics of the spinor condensate is sufficient to explain the experimental data.
Our numerical findings are supported by an analytical prediction for the momentum distributions in the limit of zero-temperature condensates.
arXiv Detail & Related papers (2022-05-16T14:50:05Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Possible implications for particle physics by quantum measurement [1.2691047660244335]
An appealing phenomenon in quantum measurements, termed as quantum Zeno effect, can be observed in particular subspaces selected by measurement Hamiltonian.
We develop an alternative insight into the properties of fundamental particles, but not intend to challenge the Standard Model (SM)
In a unified and simple manner, our effective model allows to merge the origin of neutrino's small mass and oscillations, the hierarchy pattern for masses of electric charged fermions, the color confinement, and the discretization of quantum numbers.
arXiv Detail & Related papers (2021-02-20T08:15:55Z) - Intrinsic quantum coherence in particle oscillations [0.0]
In this talk, several inconsistencies of the standard approach to particle oscillations will be explained.
The massive neutrino states are interpreted as quasiparticles on a vacuum condensate of "Cooper pairs" of massless neutrinos.
The newly defined oscillating particle states are for neutrino oscillations what the Klauder--Sudarshan--Glauber coherent states are for quantum optics.
arXiv Detail & Related papers (2020-12-29T17:35:51Z) - Theory of Neutrino Detection -- Flavor Oscillations and Weak Values [0.0]
We show that, in the relativistic limit, the quantum theory of neutrino oscillations can be described through the theory of weak measurements.
We write down the flavor equation of motion and calculate the flavor oscillation probability by showing precisely how a single neutrino interferes with itself.
arXiv Detail & Related papers (2020-02-18T22:51:36Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.