Realization of Two-dimensional Discrete Time Crystals with Anisotropic Heisenberg Coupling
- URL: http://arxiv.org/abs/2501.18036v1
- Date: Wed, 29 Jan 2025 22:51:09 GMT
- Title: Realization of Two-dimensional Discrete Time Crystals with Anisotropic Heisenberg Coupling
- Authors: Eric D. Switzer, Niall Robertson, Nathan Keenan, Ángel Rodríguez, Andrea D'Urbano, Bibek Pokharel, Talat S. Rahman, Oles Shtanko, Sergiy Zhuk, Nicolás Lorente,
- Abstract summary: A discrete time crystal (DTC) is the paradigmatic example of a phase of matter that occurs exclusively in systems out of equilibrium.
We demonstrate the existence of a DTC in a two-dimensional system governed by anisotropic Heisenberg interactions.
- Score: 0.42131793931438133
- License:
- Abstract: A discrete time crystal (DTC) is the paradigmatic example of a phase of matter that occurs exclusively in systems out of equilibrium. This phenomenon is characterized by the spontaneous symmetry breaking of discrete time-translation and provides a rich playground to study a fundamental question in statistical physics: what mechanism allows for driven quantum systems to exhibit emergent behavior that deviates from their counterparts with time-independent evolution? Unlike equilibrium phases, DTCs exhibit macroscopic manifestations of coherent quantum dynamics, challenging the conventional narrative that thermodynamic behavior universally erases quantum signatures. However, due to the difficulty of simulating these systems with either classical or quantum computers, previous studies have been limited to a set of models with Ising-like couplings -- and mostly only in one dimension -- thus precluding our understanding of the existence (or not) of DTCs in models with interactions that closely align with what occurs in nature. In this work, by combining the latest generation of IBM quantum processors with state-of-the-art tensor network methods, we are able to demonstrate the existence of a DTC in a two-dimensional system governed by anisotropic Heisenberg interactions. Our comprehensive analysis reveals a rich phase diagram encompassing spin-glass, ergodic, and time-crystalline phases, highlighting the tunability of these phases through multiple control parameters. Crucially, our results emphasize the interplay of initialization, interaction anisotropy, and driving protocols in stabilizing the DTC phase. By extending the study of Floquet matter beyond simplified models, we lay the groundwork for exploring how driven systems bridge the gap between quantum coherence and emergent non-equilibrium thermodynamics.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Tuning between continuous time crystals and many-body scars in
long-range XYZ spin chains [0.13764085113103217]
We investigate the possibility of a emphcontinuous time crystal (CTC) in undriven, energy-conserving systems exhibiting prethermalization.
We map out the dynamical phase diagram using numerical simulations based on exact diagonalization and time-dependent variational principle in the thermodynamic limit.
We identify a regime where QMBS and CTC order co-exist, and we discuss experimental protocols that reveal their similarities as well as key differences.
arXiv Detail & Related papers (2022-05-04T18:00:03Z) - Dynamical phase transitions in the collisionless pre-thermal states of
isolated quantum systems: theory and experiments [0.0]
We focus on non-equilibrium transitions characterized by an order parameter.
Our presentation covers both cold atoms as well as condensed matter systems.
We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit.
arXiv Detail & Related papers (2022-01-24T19:00:01Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.