論文の概要: Genetic Algorithm with Border Trades (GAB)
- arxiv url: http://arxiv.org/abs/2501.18184v2
- Date: Wed, 05 Feb 2025 06:02:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-06 14:21:16.468694
- Title: Genetic Algorithm with Border Trades (GAB)
- Title(参考訳): 境界貿易(GAB)を用いた遺伝的アルゴリズム
- Authors: Qingchuan Lyu,
- Abstract要約: 本稿では,境界貿易活動を通じて育種過程に新たな染色体パターンを組み込むことにより,大規模あるいは複雑な問題空間における遺伝的アルゴリズム(GA)の改善手法を提案する。
これらの戦略は染色体の多様性を高め、早期収束を防ぎ、解空間をより効率的に探索するGAの能力を高める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to improving Genetic Algorithms (GA) in large or complex problem spaces by incorporating new chromosome patterns in the breeding process through border trade activities. These strategies increase chromosome diversity, preventing premature convergence and enhancing the GA's ability to explore the solution space more effectively. Empirical evidence demonstrates significant improvements in convergence behavior. This approach offers a promising pathway to addressing challenges in optimizing large or complex problem domains.
- Abstract(参考訳): 本稿では,境界貿易活動を通じて育種過程に新たな染色体パターンを組み込むことにより,大規模あるいは複雑な問題空間における遺伝的アルゴリズム(GA)の改善手法を提案する。
これらの戦略は染色体の多様性を高め、早期収束を防ぎ、解空間をより効率的に探索するGAの能力を高める。
実証的な証拠は収束挙動の顕著な改善を示している。
このアプローチは、大規模または複雑な問題領域を最適化する際の課題に対処するための、有望な経路を提供する。
関連論文リスト
- The Pitfalls and Potentials of Adding Gene-invariance to Optimal Mixing [0.0]
Optimal Mixing (OM) は、局所探索と遺伝子組換えを統合する変異演算子である。
本稿では,遺伝子不変遺伝的アルゴリズム(GIGA)にインスパイアされた手法を提案する。
この手法は、GI-GOMEA(Gene-pool Optimal Mixing Evolutionary Algorithm)と統合され、GI-GOMEAとなる。
論文 参考訳(メタデータ) (2025-06-18T08:06:44Z) - A Greedy Strategy for Graph Cut [95.2841574410968]
GGCと呼ばれるグラフカットの問題を解決するための欲求戦略を提案する。
これは、各データサンプルがクラスタと見なされる状態から始まり、2つのクラスタを動的にマージする。
GGCはサンプル数に関してほぼ線形な計算複雑性を持つ。
論文 参考訳(メタデータ) (2024-12-28T05:49:42Z) - A Lattice-based Method for Optimization in Continuous Spaces with Genetic Algorithms [0.0]
本研究は,連続決定変数に多次元制約を組み込む格子に基づく新しい手法を提案する。
提案手法は、連続決定変数のクロスオーバーのための確立された転写技術を統合する。
ドメイン知識を活用し、デザイン空間の実行可能な領域に向けて探索プロセスを導くことを目的としている。
論文 参考訳(メタデータ) (2024-10-16T03:14:09Z) - Recombination vs Stochasticity: A Comparative Study on the Maximum Clique Problem [0.393259574660092]
最大傾き問題(英: maximum clique problem、MCP)は、グラフ理論と計算複雑性の基本的な問題である。
様々なメタヒューリスティックがMPPを近似するために使われており、遺伝的アルゴリズムやメメティックアルゴリズム、アリコロニーアルゴリズム、欲求アルゴリズム、タブアルゴリズム、シミュレートされたアニーリングなどがある。
以上の結果から,モンテカルロのアルゴリズムはランダム検索を用いてグラフを生成するが,速度と能力の両面で遺伝的アルゴリズムを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-09-26T12:50:00Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
グラフ異常検出(GAD)は、異常なグラフインスタンス(ノード、エッジ、サブグラフ、グラフ)を特定することを目的とする。
ディープラーニングアプローチ、特にグラフニューラルネットワーク(GNN)は、GADにとって有望なパラダイムとして現れています。
論文 参考訳(メタデータ) (2024-09-16T03:05:11Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - GARA: A novel approach to Improve Genetic Algorithms' Accuracy and Efficiency by Utilizing Relationships among Genes [1.7226572355808027]
本稿では,遺伝子間の関係を利用してGAの精度と効率を向上させる遺伝子制御遺伝的アルゴリズム(GRGA)を提案する。
我々は、RGGRと呼ばれる溶液空間をカプセル化した有向多部グラフを使用し、各ノードは溶液中の遺伝子に対応し、エッジは隣り合うノード間の関係を表す。
得られたRGGRは、クロスオーバーと突然変異演算子の適切な座を決定するために使用され、それによって進化過程をより速くより良く収束させる。
論文 参考訳(メタデータ) (2024-04-28T08:33:39Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
本稿では,問題の近似クラスに依存する遺伝的アルゴリズムの有用性を解析する。
特に, 遺伝的アルゴリズムは階層の最も悲観的なクラスに特に有用であることを示す。
論文 参考訳(メタデータ) (2024-02-01T09:18:34Z) - GE-AdvGAN: Improving the transferability of adversarial samples by
gradient editing-based adversarial generative model [69.71629949747884]
GAN(Generative Adversarial Networks)のような逆生成モデルは、様々な種類のデータを生成するために広く応用されている。
本研究では, GE-AdvGAN という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-11T16:43:16Z) - Genetic Algorithm enhanced by Deep Reinforcement Learning in parent
selection mechanism and mutation : Minimizing makespan in permutation flow
shop scheduling problems [0.18846515534317265]
RL+GA法はフローショップスケジューリング問題(FSP)で特に検証された。
このハイブリッドアルゴリズムはニューラルネットワーク(NN)を導入し、Qラーニング(Q-learning)というオフ政治手法を使用する。
本研究は, プリミティブGAの性能向上におけるRL+GAアプローチの有効性を明らかにするものである。
論文 参考訳(メタデータ) (2023-11-10T08:51:42Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - Hybrid Genetic Algorithm and Hill Climbing Optimization for the Neural
Network [0.0]
CIFAR-100データセット上での畳み込みニューラルネットワーク(CNN)の最適化のための遺伝的アルゴリズムとヒルクライミングアルゴリズムを組み合わせたハイブリッドモデルを提案する。
提案したハイブリッドモデルでは, 標準アルゴリズムと比較して, より少ない世代で精度が向上する。
論文 参考訳(メタデータ) (2023-08-24T22:03:18Z) - Larger Offspring Populations Help the $(1 + (\lambda, \lambda))$ Genetic
Algorithm to Overcome the Noise [76.24156145566425]
進化的アルゴリズムは、適合性の評価においてノイズに対して堅牢であることが知られている。
我々は$(lambda,lambda)$の遺伝的アルゴリズムがどんなにノイズに強いかを解析する。
論文 参考訳(メタデータ) (2023-05-08T08:49:01Z) - Epigenetics Algorithms: Self-Reinforcement-Attention mechanism to
regulate chromosomes expression [0.0]
本稿ではメチル化として知られるエピジェネティックス現象を模倣する新しいエピジェネティックスアルゴリズムを提案する。
エピジェネティックスアルゴリズムの斬新さは、主に注意機構と深層学習を利用しており、遺伝子/サイレンシングの概念とよく適合している。
論文 参考訳(メタデータ) (2023-03-15T21:33:21Z) - Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient
Methods [73.35353358543507]
SGDA(Gradient Descent-Ascent)は、min-max最適化と変分不等式問題(VIP)を解くための最も顕著なアルゴリズムの1つである。
本稿では,多種多様な降下指数法を網羅した統合収束解析を提案する。
本研究では,新しい分散化手法 (L-SVRGDA) や,新しい分散圧縮方式 (QSGDA, DIANA-SGDA, VR-DIANA-SGDA) ,座標ランダム化方式 (SEGA-SGDA) など,SGDAの新しい変種を開発した。
論文 参考訳(メタデータ) (2022-02-15T09:17:39Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
本研究では, 視覚領域における正面視を, ポーズのバリエーションで合成できるドメイン非依存学習型生成逆数ネットワーク(DAL-GAN)を提案する。
DAL-GANは、補助分類器を備えたジェネレータと、より優れた合成のために局所的およびグローバルなテクスチャ識別をキャプチャする2つの識別器から構成される。
論文 参考訳(メタデータ) (2021-07-17T20:41:41Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
本稿では,染色体ランクを用いた突然変異確率生成の代替手法を提案する。
単純な遺伝的アルゴリズム(SGA)と一定の突然変異確率と限られた資源制約内での適応的アプローチとの比較実験を行った。
論文 参考訳(メタデータ) (2021-04-18T12:41:33Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。