論文の概要: A Lattice-based Method for Optimization in Continuous Spaces with Genetic Algorithms
- arxiv url: http://arxiv.org/abs/2410.12188v1
- Date: Wed, 16 Oct 2024 03:14:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:37.238734
- Title: A Lattice-based Method for Optimization in Continuous Spaces with Genetic Algorithms
- Title(参考訳): 遺伝的アルゴリズムを用いた連続空間最適化のための格子法
- Authors: Cameron D. Harris, Kevin B. Schroeder, Jonathan Black,
- Abstract要約: 本研究は,連続決定変数に多次元制約を組み込む格子に基づく新しい手法を提案する。
提案手法は、連続決定変数のクロスオーバーのための確立された転写技術を統合する。
ドメイン知識を活用し、デザイン空間の実行可能な領域に向けて探索プロセスを導くことを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work presents a novel lattice-based methodology for incorporating multidimensional constraints into continuous decision variables within a genetic algorithm (GA) framework. The proposed approach consolidates established transcription techniques for crossover of continuous decision variables, aiming to leverage domain knowledge and guide the search process towards feasible regions of the design space. This work offers a robust and general purpose lattice-based GA that is applicable to a broad range of optimization problems. Monte Carlo analysis demonstrates that lattice-based methods find solutions two orders of magnitude closer to optima in fewer generations. The effectiveness of the lattice-based approach is showcased through two illustrative multi-objective design problems: (1) optimal telescope placement for astrophotography and (2) optimal design of a satellite constellation for maximizing ground station access. The optimal telescope placement example shows that lattice-based methods converge to the Pareto front in 15% fewer generations than traditional methods. The orbit design example shows that lattice-based methods discover an order of magnitude more Pareto-optimal solutions than traditional methods in a highly constrained design space. Overall, the results show that the lattice-based method exhibits enhanced exploration capabilities, traversing the solution space more comprehensively and achieving faster convergence compared to conventional GAs.
- Abstract(参考訳): 本研究は,遺伝的アルゴリズム(GA)フレームワーク内の連続決定変数に多次元制約を組み込む格子に基づく新しい手法を提案する。
提案手法は、ドメイン知識を活用し、設計空間の実行可能な領域に向けて探索プロセスを導くことを目的として、連続決定変数のクロスオーバーのための確立された転写技術を統合する。
この研究は、幅広い最適化問題に適用可能な、堅牢で汎用的な格子ベースのGAを提供する。
モンテカルロ解析は格子に基づく手法がより少ない世代で最適に近い2桁の解を見つけることを示した。
格子型アプローチの有効性は,(1)天体写真のための最適な望遠鏡配置,(2)地上局アクセスを最大化するための衛星コンステレーションの最適設計の2つの具体的多目的設計問題を通して示される。
最適望遠鏡配置の例は、格子ベースの手法が従来の手法よりも15%少ない世代でパレート前線に収束していることを示している。
軌道設計の例は格子に基づく手法が、高度に制約された設計空間における従来の方法よりもパレート最適解の桁数が多いことを示している。
その結果, 格子法は, 従来のGAに比べて解空間を包括的に横断し, より高速な収束を実現し, 探索能力の向上を図っていることがわかった。
関連論文リスト
- $ψ$DAG: Projected Stochastic Approximation Iteration for DAG Structure Learning [6.612096312467342]
Directed A Graphs (DAGs) の構造を学ぶことは、ノード数に応じてスケールする可能なグラフの巨大な検索空間のため、大きな課題となる。
近年の進歩は、微分可能指数関数性制約を取り入れた連続最適化タスクとしてこの問題を再定義している。
本稿では,SGD(Gradient Descent)に基づく最適化手法と統合した近似手法を用いて,DAGを学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T12:13:11Z) - Analyzing and Overcoming Local Optima in Complex Multi-Objective Optimization by Decomposition-Based Evolutionary Algorithms [5.153202024713228]
多目的進化アルゴリズム(MOEAD)はしばしば局所最適に収束し、解の多様性を制限する。
本稿では,局所最適問題を克服するために,革新的なRP選択戦略であるベクトルガイドウェイトハイブリッド法を提案する。
本研究は,2014年から2022年までのMOEADsフレームワークにおける14のアルゴリズムによるアブレーションと,提案手法の有効性を従来の手法と最先端の手法の両方に対して評価するための一連の実証実験からなる。
論文 参考訳(メタデータ) (2024-04-12T14:29:45Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
本研究では,訪問尺度の凸関数を最小化することを目的として,制約付き凸決定プロセス(MDP)について検討する。
制約付き凸MDPの設計アルゴリズムは、大きな状態空間を扱うなど、いくつかの課題に直面している。
論文 参考訳(メタデータ) (2024-02-16T16:35:18Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence [6.461785985849886]
我々は、制約付きベイズ最適化の枠組みの下で、高価なPOCOPの効率的かつ証明可能な手法を設計する。
本稿では,最適化時の平衡探索を取り入れた取得関数の設計を改良した。
部分的に観測可能な制約に対する代理モデルとして異なる確率を埋め込んだガウス過程を提案する。
論文 参考訳(メタデータ) (2023-12-06T01:00:07Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Acceleration Methods [57.202881673406324]
まず2次最適化問題を用いて加速法を2つ導入する。
我々は、ネステロフの精巧な研究から始まる運動量法を詳細に論じる。
我々は、ほぼ最適な収束率に達するための一連の簡単な手法である再起動スキームを議論することで結論付ける。
論文 参考訳(メタデータ) (2021-01-23T17:58:25Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Orthant Based Proximal Stochastic Gradient Method for
$\ell_1$-Regularized Optimization [35.236001071182855]
スパーシリティを誘発する正規化問題は、機械学習アプリケーションではユビキタスである。
本稿では,新しい手法として-Orthanximal Gradient Method (OBProx-SG)を提案する。
論文 参考訳(メタデータ) (2020-04-07T18:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。