Machine Learning Fairness for Depression Detection using EEG Data
- URL: http://arxiv.org/abs/2501.18192v1
- Date: Thu, 30 Jan 2025 08:13:01 GMT
- Title: Machine Learning Fairness for Depression Detection using EEG Data
- Authors: Angus Man Ho Kwok, Jiaee Cheong, Sinan Kalkan, Hatice Gunes,
- Abstract summary: This paper presents the very first attempt to evaluate machine learning fairness for depression detection using electroencephalogram (EEG) data.
We conduct experiments using different deep learning architectures such as CNN, Long Short-Term Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks.
Our experimental results show that bias exists in existing EEG datasets and algorithms for depression detection, and different bias mitigation methods address bias at different levels across different fairness measures.
- Score: 14.61416119202288
- License:
- Abstract: This paper presents the very first attempt to evaluate machine learning fairness for depression detection using electroencephalogram (EEG) data. We conduct experiments using different deep learning architectures such as Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Unit (GRU) networks across three EEG datasets: Mumtaz, MODMA and Rest. We employ five different bias mitigation strategies at the pre-, in- and post-processing stages and evaluate their effectiveness. Our experimental results show that bias exists in existing EEG datasets and algorithms for depression detection, and different bias mitigation methods address bias at different levels across different fairness measures.
Related papers
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)
Our tokenization scheme represents EEG signals at a per-channel patch.
We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - From Epilepsy Seizures Classification to Detection: A Deep Learning-based Approach for Raw EEG Signals [0.8182812460605992]
One-third of people suffering from mesial temporal lobe epilepsy exhibit drug resistance.
Key part in anti-seizure medication development is the capability of detecting and quantifying epileptic seizures.
In this study, we introduced a seizure detection pipeline based on deep learning models applied to raw EEG signals.
arXiv Detail & Related papers (2024-10-04T12:52:37Z) - Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - EEG Decoding for Datasets with Heterogenous Electrode Configurations
using Transfer Learning Graph Neural Networks [5.349852254138086]
It is difficult to combine data across labs or even data within the same lab collected over the years due to the variation in recording equipment and electrode layouts.
We developed a novel machine learning framework combining graph neural networks (GNNs) and transfer learning methodologies for non-invasive Motor Imagery (MI) EEG decoding.
arXiv Detail & Related papers (2023-06-20T16:29:00Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
Seizure type identification is essential for the treatment and management of epileptic patients.
We present a novel multi-path seizure-type classification deep learning network (MP-SeizNet)
MP-SeizNet consists of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism.
arXiv Detail & Related papers (2022-11-09T01:07:20Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
We propose a novel deep multi-scale neural network that discovers feature representations in multiple frequency/time ranges.
By representing EEG signals withspectral-temporal information, the proposed method can be utilized for diverse paradigms.
arXiv Detail & Related papers (2020-03-02T04:06:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.