Behavior Modeling Space Reconstruction for E-Commerce Search
- URL: http://arxiv.org/abs/2501.18216v2
- Date: Fri, 07 Feb 2025 03:34:08 GMT
- Title: Behavior Modeling Space Reconstruction for E-Commerce Search
- Authors: Yejing Wang, Chi Zhang, Xiangyu Zhao, Qidong Liu, Maolin Wang, Xuewei Tao, Zitao Liu, Xing Shi, Xudong Yang, Ling Zhong, Wei Lin,
- Abstract summary: Search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship.
This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams.
To surmount these challenges, our research introduces a novel framework, which enhances search accuracy through two components to reconstruct the behavior modeling space.
- Score: 31.17518198481034
- License:
- Abstract: Delivering superior search services is crucial for enhancing customer experience and driving revenue growth. Conventionally, search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship. This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams, uncovering two prevalent yet significant issues: entangled preference and relevance effects, and a collapsed modeling space. To surmount these challenges, our research introduces a novel framework, DRP, which enhances search accuracy through two components to reconstruct the behavior modeling space. Specifically, we implement preference editing to proactively remove the relevance effect from preference predictions, yielding untainted user preferences. Additionally, we employ adaptive fusion, which dynamically adjusts fusion criteria to align with the varying patterns of relevance and preference, facilitating more nuanced and tailored behavior predictions within the reconstructed modeling space. Empirical validation on two public datasets and a proprietary search dataset underscores the superiority of our proposed methodology, demonstrating marked improvements in performance over existing approaches.
Related papers
- MixRec: Heterogeneous Graph Collaborative Filtering [21.96510707666373]
We present a graph collaborative filtering model MixRec to disentangling users' multi-behavior interaction patterns.
Our model achieves this by incorporating intent disentanglement and multi-behavior modeling.
We also introduce a novel contrastive learning paradigm that adaptively explores the advantages of self-supervised data augmentation.
arXiv Detail & Related papers (2024-12-18T13:12:36Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.
We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.
A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.
We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - A Model-Agnostic Framework for Recommendation via Interest-aware Item
Embeddings [4.989653738257287]
Interest-aware Capsule network (IaCN) is a model-agnostic framework that directly learns interest-oriented item representations.
IaCN serves as an auxiliary task, enabling the joint learning of both item-based and interest-based representations.
We evaluate the proposed approach on benchmark datasets, exploring various scenarios involving different deep neural networks.
arXiv Detail & Related papers (2023-08-17T22:40:59Z) - Unified Embedding Based Personalized Retrieval in Etsy Search [0.206242362470764]
We propose learning a unified embedding model incorporating graph, transformer and term-based embeddings end to end.
Our personalized retrieval model significantly improves the overall search experience, as measured by a 5.58% increase in search purchase rate and a 2.63% increase in site-wide conversion rate.
arXiv Detail & Related papers (2023-06-07T23:24:50Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query
Product Evolutionary Graph [18.826901341496143]
Temporal event forecasting is a new user behavior prediction task in a unified query product evolutionary graph.
We propose a novel RetrievalEnhanced Event forecasting framework.
Unlike existing methods, we propose methods that enhance user representations via roughly connected entities in the whole graph.
arXiv Detail & Related papers (2022-02-12T19:27:56Z) - Heterogeneous Network Embedding for Deep Semantic Relevance Match in
E-commerce Search [29.881612817309716]
We design an end-to-end First-and-Second-order Relevance prediction model for e-commerce item relevance.
We introduce external knowledge generated from BERT to refine the network of user behaviors.
Results of offline experiments showed that the new model significantly improved the prediction accuracy in terms of human relevance judgment.
arXiv Detail & Related papers (2021-01-13T03:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.