論文の概要: Leveraging LLM Agents for Automated Optimization Modeling for SASP Problems: A Graph-RAG based Approach
- arxiv url: http://arxiv.org/abs/2501.18320v1
- Date: Thu, 30 Jan 2025 13:00:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:20.014000
- Title: Leveraging LLM Agents for Automated Optimization Modeling for SASP Problems: A Graph-RAG based Approach
- Title(参考訳): SASP問題に対する自動最適化モデリングのためのLLMエージェントの活用:グラフRAGに基づくアプローチ
- Authors: Tianpeng Pan, Wenqiang Pu, Licheng Zhao, Rui Zhou,
- Abstract要約: 本稿では,検索拡張生成(RAG)技術に基づく自動モデリング手法を提案する。
提案手法(MAG-RAG)はいくつかのAOMベンチマークより優れている。
- 参考スコア(独自算出の注目度): 7.790822602801334
- License:
- Abstract: Automated optimization modeling (AOM) has evoked considerable interest with the rapid evolution of large language models (LLMs). Existing approaches predominantly rely on prompt engineering, utilizing meticulously designed expert response chains or structured guidance. However, prompt-based techniques have failed to perform well in the sensor array signal processing (SASP) area due the lack of specific domain knowledge. To address this issue, we propose an automated modeling approach based on retrieval-augmented generation (RAG) technique, which consists of two principal components: a multi-agent (MA) structure and a graph-based RAG (Graph-RAG) process. The MA structure is tailored for the architectural AOM process, with each agent being designed based on principles of human modeling procedure. The Graph-RAG process serves to match user query with specific SASP modeling knowledge, thereby enhancing the modeling result. Results on ten classical signal processing problems demonstrate that the proposed approach (termed as MAG-RAG) outperforms several AOM benchmarks.
- Abstract(参考訳): 自動最適化モデリング(AOM)は、大規模言語モデル(LLM)の急速な進化に多大な関心を集めている。
既存のアプローチは、厳密に設計された専門家の応答チェーンや構造化されたガイダンスを利用して、迅速なエンジニアリングに依存している。
しかし、特定のドメイン知識の欠如により、センサアレイ信号処理(SASP)分野では、プロンプトベースの技術はうまく機能しなかった。
そこで本研究では,マルチエージェント (MA) 構造とグラフベースRAG (Graph-RAG) プロセスの2つの主成分からなる検索拡張生成 (RAG) 技術に基づく自動モデリング手法を提案する。
MA構造はアーキテクチャAOMプロセス用に調整されており、各エージェントは人間のモデリング手順の原則に基づいて設計されている。
Graph-RAGプロセスは、ユーザクエリと特定のSASPモデリング知識とを一致させることで、モデリング結果を向上する。
10の古典的信号処理問題の結果、提案手法(MAG-RAG)がいくつかのAOMベンチマークより優れていることが示された。
関連論文リスト
- Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
最適化モデルのための半自動データ合成フレームワークOR-Instructを紹介する。
また,実用的なOR問題を解く上で,LLMを評価するための最初の産業ベンチマークであるIndustrialORを紹介した。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Generative AI Agents with Large Language Model for Satellite Networks via a Mixture of Experts Transmission [74.10928850232717]
本稿では、モデル定式化のための生成人工知能(AI)エージェントを開発し、送信戦略の設計に専門家(MoE)の混合を適用した。
具体的には,大規模言語モデル(LLM)を活用して対話型モデリングパラダイムを構築する。
定式化問題の解法として, MoE-proximal Policy Optimization (PPO) アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-14T03:44:54Z) - Towards Single-System Illusion in Software-Defined Vehicles -- Automated, AI-Powered Workflow [3.2821049498759094]
本稿では,車載ソフトウェアシステムの開発における,新しいモデルと特徴に基づくアプローチを提案する。
提案されたアプローチの重要なポイントの1つは、近代的な生成AI、特にLarge Language Models(LLM)の導入である。
その結果、パイプラインは広範囲に自動化され、各ステップでフィードバックが生成される。
論文 参考訳(メタデータ) (2024-03-21T15:07:57Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
グラディエントにインスパイアされた Prompt ベースの GPO を開発した。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。