Stream-Based Monitoring of Algorithmic Fairness
- URL: http://arxiv.org/abs/2501.18331v1
- Date: Thu, 30 Jan 2025 13:18:59 GMT
- Title: Stream-Based Monitoring of Algorithmic Fairness
- Authors: Jan Baumeister, Bernd Finkbeiner, Frederik Scheerer, Julian Siber, Tobias Wagenpfeil,
- Abstract summary: Stream-based monitoring is proposed as a solution for verifying the algorithmic fairness of decision and prediction systems at runtime.
We present a principled way to formalize algorithmic fairness over temporal data streams in the specification language RTLola.
- Score: 4.811789437743092
- License:
- Abstract: Automatic decision and prediction systems are increasingly deployed in applications where they significantly impact the livelihood of people, such as for predicting the creditworthiness of loan applicants or the recidivism risk of defendants. These applications have given rise to a new class of algorithmic-fairness specifications that require the systems to decide and predict without bias against social groups. Verifying these specifications statically is often out of reach for realistic systems, since the systems may, e.g., employ complex learning components, and reason over a large input space. In this paper, we therefore propose stream-based monitoring as a solution for verifying the algorithmic fairness of decision and prediction systems at runtime. Concretely, we present a principled way to formalize algorithmic fairness over temporal data streams in the specification language RTLola and demonstrate the efficacy of this approach on a number of benchmarks. Besides synthetic scenarios that particularly highlight its efficiency on streams with a scaling amount of data, we notably evaluate the monitor on real-world data from the recidivism prediction tool COMPAS.
Related papers
- The Significance of Latent Data Divergence in Predicting System Degradation [1.2058600649065616]
Condition-Based Maintenance is pivotal in enabling the early detection of potential failures in engineering systems.
We introduce a novel methodology grounded in the analysis of statistical similarity within latent data from system components.
We infer the similarity between systems by evaluating the divergence of these priors, offering a nuanced understanding of individual system behaviors.
arXiv Detail & Related papers (2024-06-13T11:41:20Z) - Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them) [14.396431159723297]
We show that conformal prediction can theoretically be extended to textitany joint data distribution.
Although the most general case is exceedingly impractical to compute, for concrete practical applications we outline a procedure for deriving specific conformal algorithms.
arXiv Detail & Related papers (2024-05-10T17:40:24Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees [2.1684857243537334]
This tutorial focuses on efficient methods to predictive monitoring (PM)
PM is the problem of detecting future violations of a given requirement from the current state of a system.
We present a general and comprehensive framework summarizing our approach to the predictive monitoring of CPSs.
arXiv Detail & Related papers (2023-12-04T15:16:42Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Learning from Heterogeneous Data Based on Social Interactions over
Graphs [58.34060409467834]
This work proposes a decentralized architecture, where individual agents aim at solving a classification problem while observing streaming features of different dimensions.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
We show that the.
strategy enables the agents to learn consistently under this highly-heterogeneous setting.
arXiv Detail & Related papers (2021-12-17T12:47:18Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z) - Fast-Fourier-Forecasting Resource Utilisation in Distributed Systems [10.219353459640137]
We present a communication-efficient data collection mechanism for distributed computing systems.
We also propose a deep learning architecture using complex Gated Recurrent Units to forecast resource utilisation.
Our approach resolves challenges encountered in resource provisioning frameworks and can be applied to other forecasting problems.
arXiv Detail & Related papers (2020-01-13T14:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.