Robust Online Conformal Prediction under Uniform Label Noise
- URL: http://arxiv.org/abs/2501.18363v2
- Date: Mon, 03 Feb 2025 02:27:43 GMT
- Title: Robust Online Conformal Prediction under Uniform Label Noise
- Authors: Huajun Xi, Kangdao Liu, Hao Zeng, Wenguang Sun, Hongxin Wei,
- Abstract summary: We investigate the robustness of online conformal prediction under uniform label noise with a known noise rate.
We propose Noise Robust Online Conformal Prediction (dubbed NR-OCP) by updating the threshold with a novel robust pinball loss.
Our theoretical analysis shows that NR-OCP eliminates the coverage gap in both constant and dynamic learning rate schedules.
- Score: 10.059818934854038
- License:
- Abstract: Conformal prediction is an emerging technique for uncertainty quantification that constructs prediction sets guaranteed to contain the true label with a predefined probability. Recent work develops online conformal prediction methods that adaptively construct prediction sets to accommodate distribution shifts. However, existing algorithms typically assume perfect label accuracy which rarely holds in practice. In this work, we investigate the robustness of online conformal prediction under uniform label noise with a known noise rate, in both constant and dynamic learning rate schedules. We show that label noise causes a persistent gap between the actual mis-coverage rate and the desired rate $\alpha$, leading to either overestimated or underestimated coverage guarantees. To address this issue, we propose Noise Robust Online Conformal Prediction (dubbed NR-OCP) by updating the threshold with a novel robust pinball loss, which provides an unbiased estimate of clean pinball loss without requiring ground-truth labels. Our theoretical analysis shows that NR-OCP eliminates the coverage gap in both constant and dynamic learning rate schedules, achieving a convergence rate of $\mathcal{O}(T^{-1/2})$ for both empirical and expected coverage errors under uniform label noise. Extensive experiments demonstrate the effectiveness of our method by achieving both precise coverage and improved efficiency.
Related papers
- Noise-Adaptive Conformal Classification with Marginal Coverage [53.74125453366155]
We introduce an adaptive conformal inference method capable of efficiently handling deviations from exchangeability caused by random label noise.
We validate our method through extensive numerical experiments demonstrating its effectiveness on synthetic and real data sets.
arXiv Detail & Related papers (2025-01-29T23:55:23Z) - Estimating the Conformal Prediction Threshold from Noisy Labels [22.841631892273547]
We show how we can estimate the noise-free conformal threshold based on the noisy labeled data.
We dub our approach Noise-Aware Conformal Prediction (NACP) and show on several natural and medical image classification datasets.
arXiv Detail & Related papers (2025-01-22T09:35:58Z) - Verifiably Robust Conformal Prediction [1.391198481393699]
This paper introduces VRCP (Verifiably Robust Conformal Prediction), a new framework that leverages neural network verification methods to recover coverage guarantees under adversarial attacks.
Our method is the first to support perturbations bounded by arbitrary norms including $ell1$, $ell2$, and $ellinfty$, as well as regression tasks.
In every case, VRCP achieves above nominal coverage and yields significantly more efficient and informative prediction regions than the SotA.
arXiv Detail & Related papers (2024-05-29T09:50:43Z) - A Conformal Prediction Score that is Robust to Label Noise [13.22445242068721]
We introduce a conformal score that is robust to label noise.
The noise-free conformal score is estimated using the noisy labeled data and the noise level.
We show that our method outperforms current methods by a large margin, in terms of the average size of the prediction set.
arXiv Detail & Related papers (2024-05-04T12:22:02Z) - Provably Robust Conformal Prediction with Improved Efficiency [29.70455766394585]
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage.
adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates.
We propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little overhead.
arXiv Detail & Related papers (2024-04-30T15:49:01Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making.
We propose Equal Opportunity of Coverage (EOC) that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level.
arXiv Detail & Related papers (2023-11-03T21:19:59Z) - PAC Prediction Sets Under Label Shift [52.30074177997787]
Prediction sets capture uncertainty by predicting sets of labels rather than individual labels.
We propose a novel algorithm for constructing prediction sets with PAC guarantees in the label shift setting.
We evaluate our approach on five datasets.
arXiv Detail & Related papers (2023-10-19T17:57:57Z) - Label Noise Robustness of Conformal Prediction [24.896717715256358]
We study the robustness of conformal prediction, a powerful tool for uncertainty quantification, to label noise.
Our analysis tackles both regression and classification problems.
We extend our theory and formulate the requirements for correctly controlling a general loss function.
arXiv Detail & Related papers (2022-09-28T17:59:35Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
We introduce the CORP approach, which generates provably statistically Consistent, Optimally binned, and Reproducible reliability diagrams in an automated way.
Corpor is based on non-parametric isotonic regression and implemented via the Pool-adjacent-violators (PAV) algorithm.
arXiv Detail & Related papers (2020-08-07T08:22:26Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.