論文の概要: Adaptive Object Detection for Indoor Navigation Assistance: A Performance Evaluation of Real-Time Algorithms
- arxiv url: http://arxiv.org/abs/2501.18444v1
- Date: Thu, 30 Jan 2025 15:56:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:14:56.864796
- Title: Adaptive Object Detection for Indoor Navigation Assistance: A Performance Evaluation of Real-Time Algorithms
- Title(参考訳): 室内ナビゲーション支援のための適応物体検出:リアルタイムアルゴリズムの性能評価
- Authors: Abhinav Pratap, Sushant Kumar, Suchinton Chakravarty,
- Abstract要約: 室内ナビゲーション支援の文脈において,4つのリアルタイムオブジェクト検出アルゴリズム YOLO,SSD,Faster R-CNN,Mask R-CNN を評価する。
その結果,精度と効率のトレードオフを浮き彫りにし,リアルタイムナビゲーションのための最適なアルゴリズムの選択に関する洞察を提供することができた。
- 参考スコア(独自算出の注目度): 4.80104397397529
- License:
- Abstract: This study addresses the need for accurate and efficient object detection in assistive technologies for visually impaired individuals. We evaluate four real-time object detection algorithms YOLO, SSD, Faster R-CNN, and Mask R-CNN within the context of indoor navigation assistance. Using the Indoor Objects Detection dataset, we analyze detection accuracy, processing speed, and adaptability to indoor environments. Our findings highlight the trade-offs between precision and efficiency, offering insights into selecting optimal algorithms for realtime assistive navigation. This research advances adaptive machine learning applications, enhancing indoor navigation solutions for the visually impaired and promoting accessibility.
- Abstract(参考訳): 本研究は、視覚障害者のための支援技術において、正確で効率的な物体検出の必要性に対処するものである。
室内ナビゲーション支援の文脈において,4つのリアルタイムオブジェクト検出アルゴリズム YOLO,SSD,Faster R-CNN,Mask R-CNN を評価する。
Indoor Objects Detectionデータセットを用いて,室内環境に対する検出精度,処理速度,適応性を分析した。
その結果,精度と効率のトレードオフを浮き彫りにし,リアルタイムナビゲーションのための最適なアルゴリズムの選択に関する洞察を提供することができた。
本研究は、適応機械学習応用を推進し、視覚障害者のための屋内ナビゲーションソリューションを強化し、アクセシビリティを促進する。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Perceptual Piercing: Human Visual Cue-based Object Detection in Low Visibility Conditions [2.0409124291940826]
本研究では,大気散乱と人間の視覚野機構に触発された新しい深層学習フレームワークを提案する。
本研究の目的は, 環境条件下での検知システムの精度と信頼性を高めることである。
論文 参考訳(メタデータ) (2024-10-02T04:03:07Z) - Small Object Detection for Indoor Assistance to the Blind using YOLO NAS Small and Super Gradients [0.0]
本稿では,小物体検出の課題に対処して,視覚障害者に対する屋内支援のための新しいアプローチを提案する。
軽量で効率的なオブジェクト検出モデルであるYOLO NAS Smallアーキテクチャを,Super Gradientsトレーニングフレームワークを用いて最適化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-28T05:38:20Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
本稿では,カメラと機械学習アルゴリズムを組み合わせることで,相対的なナビゲーションを実現する方法について論じる。
高速領域ベース畳み込みニューラルネットワーク(R-CNN)とYou Only Look Once(YOLOv5)の2つのディープラーニングに基づくオブジェクト検出アルゴリズムの性能を検証した。
本稿では, 特徴認識アルゴリズムの実装と, 宇宙船誘導航法制御システムへの統合に向けての道筋について論じる。
論文 参考訳(メタデータ) (2023-01-22T04:53:38Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Analysis of voxel-based 3D object detection methods efficiency for
real-time embedded systems [93.73198973454944]
本稿では, ボクセルをベースとした2つの3次元物体検出手法について述べる。
実験の結果,これらの手法は入力点雲が遠距離にあるため,遠距離の小さな物体を検出できないことが確認できた。
この結果から,既存手法の計算のかなりの部分は,検出に寄与しないシーンの位置に着目していることが示唆された。
論文 参考訳(メタデータ) (2021-05-21T12:40:59Z) - Meta-Cognition-Based Simple And Effective Approach To Object Detection [4.68287703447406]
物体検出のためのメタ認知学習戦略を探索し、検出速度を同時に維持しながら、一般化能力を向上させる。
実験の結果、絶対精度は2.6%(最小値)と4.4%(最大値)で、推論時間にオーバーヘッドはないことが示された。
論文 参考訳(メタデータ) (2020-12-02T13:36:51Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
本稿では、複数の低計算NAOロボットがカメラビューにおける物体のリアルタイム検出、認識、位置決めを行うことを可能にする新しいアーキテクチャについて述べる。
オブジェクト検出と局所化のためのアルゴリズムは,複数のシナリオにおける屋内実験に基づくYOLOv3の実証的な修正である。
このアーキテクチャは、カメラフィードからニューラルネットにリアルタイムフレームを供給し、その結果を使ってロボットを誘導する効果的なエンドツーエンドパイプラインも備えている。
論文 参考訳(メタデータ) (2020-01-20T05:24:58Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
慣性測定ユニット(IMU)は小型で安価でエネルギー効率が良く、スマートデバイスや移動ロボットに広く使われている。
正確で信頼性の高い歩行者ナビゲーションをサポートするために慣性データをエクスプロイトすることは、新しいインターネット・オブ・シングス・アプリケーションやサービスにとって重要なコンポーネントである。
我々は、深層学習に基づく慣性ナビゲーション研究のための最初の公開データセットであるOxIOD(OxIOD)を提示、リリースする。
論文 参考訳(メタデータ) (2020-01-13T04:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。