論文の概要: SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model
- arxiv url: http://arxiv.org/abs/2501.18636v1
- Date: Tue, 28 Jan 2025 17:01:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:29.442407
- Title: SafeRAG: Benchmarking Security in Retrieval-Augmented Generation of Large Language Model
- Title(参考訳): SafeRAG: 大規模言語モデルの検索強化世代におけるベンチマークセキュリティ
- Authors: Xun Liang, Simin Niu, Zhiyu Li, Sensen Zhang, Hanyu Wang, Feiyu Xiong, Jason Zhaoxin Fan, Bo Tang, Shichao Song, Mengwei Wang, Jiawei Yang,
- Abstract要約: 我々は、RAGセキュリティを評価するために、SafeRAGというベンチマークを導入する。
まず、アタックタスクを銀のノイズ、コンテキスト間競合、ソフト広告、ホワイト・デニアル・オブ・サービスに分類する。
次に、SafeRAGデータセットを使用して、RAGが遭遇する可能性のあるさまざまな攻撃シナリオをシミュレートします。
- 参考スコア(独自算出の注目度): 17.046058202577985
- License:
- Abstract: The indexing-retrieval-generation paradigm of retrieval-augmented generation (RAG) has been highly successful in solving knowledge-intensive tasks by integrating external knowledge into large language models (LLMs). However, the incorporation of external and unverified knowledge increases the vulnerability of LLMs because attackers can perform attack tasks by manipulating knowledge. In this paper, we introduce a benchmark named SafeRAG designed to evaluate the RAG security. First, we classify attack tasks into silver noise, inter-context conflict, soft ad, and white Denial-of-Service. Next, we construct RAG security evaluation dataset (i.e., SafeRAG dataset) primarily manually for each task. We then utilize the SafeRAG dataset to simulate various attack scenarios that RAG may encounter. Experiments conducted on 14 representative RAG components demonstrate that RAG exhibits significant vulnerability to all attack tasks and even the most apparent attack task can easily bypass existing retrievers, filters, or advanced LLMs, resulting in the degradation of RAG service quality. Code is available at: https://github.com/IAAR-Shanghai/SafeRAG.
- Abstract(参考訳): 検索強化世代(RAG)の索引付け・検索・生成パラダイムは,外的知識を大規模言語モデル(LLM)に統合することにより,知識集約的な課題の解決に成功している。
しかし,攻撃者は知識を操作することで攻撃を行うことができるため,外部知識と未検証知識を組み込むことでLSMの脆弱性が増大する。
本稿では,RAGのセキュリティを評価するためのベンチマークであるSafeRAGを紹介する。
まず、アタックタスクを銀のノイズ、コンテキスト間競合、ソフト広告、ホワイト・デニアル・オブ・サービスに分類する。
次に、主にタスク毎にRAGセキュリティ評価データセット(SafeRAGデータセット)を手動で構築する。
次に、SafeRAGデータセットを使用して、RAGが遭遇する可能性のあるさまざまな攻撃シナリオをシミュレートします。
14のRAGコンポーネントで実施された実験では、RAGは全ての攻撃タスクに重大な脆弱性を示しており、最も明らかな攻撃タスクでさえ、既存のレトリバー、フィルタ、または高度なLCMを簡単に回避でき、RAGサービス品質が低下することを示した。
コードは、https://github.com/IAAR-Shanghai/SafeRAG.comで入手できる。
関連論文リスト
- HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
我々は、新しい脆弱性、検索プロンプトハイジャック攻撃(HijackRAG)を明らかにする。
HijackRAGは、悪意のあるテキストを知識データベースに注入することで、攻撃者がRAGシステムの検索機構を操作できるようにする。
攻撃者の知識の異なるレベルに合わせたブラックボックスとホワイトボックスの攻撃戦略を提案する。
論文 参考訳(メタデータ) (2024-10-30T09:15:51Z) - Rag and Roll: An End-to-End Evaluation of Indirect Prompt Manipulations in LLM-based Application Frameworks [12.061098193438022]
Retrieval Augmented Generation (RAG) は、分散知識を欠くモデルによく用いられる手法である。
本稿では,RAGシステムのエンドツーエンドの間接的なプロンプト操作に対する安全性について検討する。
論文 参考訳(メタデータ) (2024-08-09T12:26:05Z) - ConfusedPilot: Confused Deputy Risks in RAG-based LLMs [2.423202571519879]
我々は、Copilotを混乱させ、応答に完全性と機密性を侵害するRAGシステムのセキュリティ脆弱性のクラスであるConfusedPilotを紹介します。
本研究は,現在のRAGベースのシステムにおけるセキュリティ脆弱性を強調し,今後のRAGベースのシステムを保護するための設計ガイドラインを提案する。
論文 参考訳(メタデータ) (2024-08-09T05:20:05Z) - ShieldGemma: Generative AI Content Moderation Based on Gemma [49.91147965876678]
ShieldGemmaは、Gemma2上に構築された安全コンテンツモデレーションモデルのスイートである。
モデルは、主要な危険タイプにわたる安全リスクの堅牢で最先端の予測を提供する。
論文 参考訳(メタデータ) (2024-07-31T17:48:14Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
本稿では,RAGシステムに対して,メンバーシップ推論攻撃(MIA)を行うための効率的かつ使いやすい手法を提案する。
2つのベンチマークデータセットと複数の生成モデルを用いて攻撃の有効性を示す。
本研究は,RAGシステムにおけるセキュリティ対策の実施の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-05-30T19:46:36Z) - Certifiably Robust RAG against Retrieval Corruption [58.677292678310934]
Retrieval-augmented Generation (RAG) は、回復汚職攻撃に弱いことが示されている。
本稿では,ロバストRAGを検索汚職攻撃に対する最初の防御フレームワークとして提案する。
論文 参考訳(メタデータ) (2024-05-24T13:44:25Z) - Typos that Broke the RAG's Back: Genetic Attack on RAG Pipeline by Simulating Documents in the Wild via Low-level Perturbations [9.209974698634175]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) の限界に対処するための有望なソリューションである。
本研究では,RAGのロバスト性評価における2つの未解明点について検討する。
本稿では,RAG(textitGARAG)を標的とした新たな攻撃手法を提案する。
論文 参考訳(メタデータ) (2024-04-22T07:49:36Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z) - On the Security Risks of Knowledge Graph Reasoning [71.64027889145261]
我々は、敵の目標、知識、攻撃ベクトルに応じて、KGRに対するセキュリティ脅威を体系化する。
我々は、このような脅威をインスタンス化する新しいタイプの攻撃であるROARを提示する。
ROARに対する潜在的な対策として,潜在的に有毒な知識のフィルタリングや,対向的な拡張クエリによるトレーニングについて検討する。
論文 参考訳(メタデータ) (2023-05-03T18:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。