論文の概要: Machine learning of microstructure--property relationships in materials with robust features from foundational vision transformers
- arxiv url: http://arxiv.org/abs/2501.18637v1
- Date: Tue, 28 Jan 2025 17:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:31.808905
- Title: Machine learning of microstructure--property relationships in materials with robust features from foundational vision transformers
- Title(参考訳): 微細構造の機械学習-基礎的視覚変換器の頑健な特徴を持つ材料におけるプロパティ関係-
- Authors: Sheila E. Whitman, Marat I. Latypov,
- Abstract要約: マイクロストラクチャーの機械学習-データからのプロパティ関係は、計算材料科学における新たなアプローチである。
本稿では,タスクに依存しないマイクロ構造特徴の抽出に,事前訓練された基礎視覚変換器を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Machine learning of microstructure--property relationships from data is an emerging approach in computational materials science. Most existing machine learning efforts focus on the development of task-specific models for each microstructure--property relationship. We propose utilizing pre-trained foundational vision transformers for the extraction of task-agnostic microstructure features and subsequent light-weight machine learning of a microstructure-dependent property. We demonstrate our approach with pre-trained state-of-the-art vision transformers (CLIP, DINOV2, SAM) in two case studies on machine-learning: (i) elastic modulus of two-phase microstructures based on simulations data; and (ii) Vicker's hardness of Ni-base and Co-base superalloys based on experimental data published in literature. Our results show the potential of foundational vision transformers for robust microstructure representation and efficient machine learning of microstructure--property relationships without the need for expensive task-specific training or fine-tuning of bespoke deep learning models.
- Abstract(参考訳): マイクロストラクチャーの機械学習-データからのプロパティ関係は、計算材料科学における新たなアプローチである。
既存の機械学習の取り組みのほとんどは、各マイクロ構造のためのタスク固有のモデルの開発に焦点を当てている。
本稿では,タスク非依存のミクロ構造の特徴抽出と,それに続く微構造依存特性の軽量機械学習のために,事前学習した基礎視覚変換器を提案する。
我々は、機械学習の2つのケーススタディにおいて、事前訓練された最先端ビジョントランスフォーマー(CLIP、DINOV2、SAM)によるアプローチを実証する。
一 シミュレーションデータに基づく二相組織弾性率、及び
(II)Ni基およびCo基超合金のビッカー硬度は、文献で発表された実験データに基づく。
本研究は,高額なタスク固有トレーニングや深層学習モデルの微調整を必要とせず,より堅牢なミクロ構造表現と効率的な機械学習を実現するための基礎的視覚変換器の可能性を示す。
関連論文リスト
- Revealing the Evolution of Order in Materials Microstructures Using Multi-Modal Computer Vision [4.6481041987538365]
マイクロエレクトロニクス用高性能材料の開発は, マイクロ構造秩序を記述し, 直接的に定義する能力に依存している。
本稿では, 複合酸化物La$_1-x$Sr$_x$FeO$_3$の電子顕微鏡解析の順序を記述するためのマルチモーダル機械学習(ML)手法を実証する。
我々は、ユニモーダルモデルとマルチモーダルモデルの性能の違いを観察し、コンピュータビジョンを用いて結晶の秩序を記述する一般的な教訓を導いた。
論文 参考訳(メタデータ) (2024-11-15T02:44:32Z) - Learning Correlation Structures for Vision Transformers [93.22434535223587]
構造自己注意(StructSA)と呼ばれる新しい注意機構を導入する。
我々は、畳み込みによるキー-クエリ相関の時空間構造を認識して注意マップを生成する。
これは、シーンレイアウト、オブジェクトの動き、オブジェクト間の関係など、画像やビデオのリッチな構造パターンを効果的に活用する。
論文 参考訳(メタデータ) (2024-04-05T07:13:28Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Mechanical Characterization and Inverse Design of Stochastic Architected
Metamaterials Using Neural Operators [2.4918888803900727]
機械学習は、建築された材料の設計のための変革的なツールとして登場しつつある。
ここでは、ディープニューラル演算子(DeepONet)を活用した、エンドツーエンドの科学MLフレームワークを紹介する。
2光子リソグラフィーを用いて印刷した脊椎の微細構造から得られた結果,機械的応答の予測誤差が5~10%の範囲内であることが判明した。
論文 参考訳(メタデータ) (2023-11-23T05:23:15Z) - Multimodal machine learning for materials science: composition-structure
bimodal learning for experimentally measured properties [4.495968252019426]
本稿では,構成構造ビモーダル学習による材料科学におけるマルチモーダル機械学習の新しいアプローチを提案する。
提案するCOSNetは,不完全な構造情報を持つ実験材料特性の学習と予測を強化するために設計されている。
論文 参考訳(メタデータ) (2023-08-04T02:04:52Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Three-dimensional microstructure generation using generative adversarial
neural networks in the context of continuum micromechanics [77.34726150561087]
本研究は, 三次元マイクロ構造生成に適した生成対向ネットワークを提案する。
軽量アルゴリズムは、明示的な記述子を必要とせずに、単一のmicroCTスキャンから材料の基礎特性を学習することができる。
論文 参考訳(メタデータ) (2022-05-31T13:26:51Z) - Towards Automated Neural Interaction Discovery for Click-Through Rate
Prediction [64.03526633651218]
CTR(Click-Through Rate)予測は、レコメンダシステムにおいて最も重要な機械学習タスクの1つである。
本稿では,AutoCTR と呼ばれる CTR 予測のための自動インタラクションアーキテクチャ探索フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-29T04:33:01Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
深部生成モデルに基づく新しいデータ駆動メタマテリアル設計フレームワークを提案する。
本研究では,VAEの潜伏空間が,形状類似度を測定するための距離メートル法を提供することを示す。
機能的グレードとヘテロジニアスなメタマテリアルシステムの両方を設計することで、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2020-06-27T03:56:55Z) - Intelligent multiscale simulation based on process-guided composite
database [0.0]
本稿では、プロセスモデリング、材料均質化、機械学習に基づく統合データ駆動モデリングフレームワークを提案する。
我々は, 自動車, 航空宇宙, エレクトロニクス産業において重要な材料システムとして認識されてきた, 射出成形した短繊維強化複合材料に興味を持っている。
論文 参考訳(メタデータ) (2020-03-20T20:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。