Unconventional high-temperature excitonic insulators in two-dimensional topological materials
- URL: http://arxiv.org/abs/2501.18694v1
- Date: Thu, 30 Jan 2025 19:00:06 GMT
- Title: Unconventional high-temperature excitonic insulators in two-dimensional topological materials
- Authors: L. Maisel LicerĂ¡n, H. T. C. Stoof,
- Abstract summary: Bound electron-hole pairs in semiconductors known as excitons can form a coherent state at low temperatures.
The resulting phase is known as the excitonic insulator and has superfluid properties.
We study the excitonic insulator in a pair of recently proposed two-dimensional candidate materials with nontrivial band topology.
- Score: 0.0
- License:
- Abstract: Bound electron-hole pairs in semiconductors known as excitons can form a coherent state at low temperatures akin to a BCS condensate. The resulting phase is known as the excitonic insulator and has superfluid properties. Here we theoretically study the excitonic insulator in a pair of recently proposed two-dimensional candidate materials with nontrivial band topology. Contrary to previous works, we include interaction channels that violate the individual electron and hole number conservations. These are on equal footing with the number-conserving processes due to the substantial overlap of Wannier orbitals of different bands, which cannot be exponentially localized due to the nontrivial Chern numbers of the latter. Their inclusion is crucial to determine the symmetry of the electron-hole pairing, and by performing mean-field calculations at nonzero temperatures we find that the order parameter is a chiral $d$-wave. We discuss the nontrivial topology of this unconventional state and analyze its superfluid properties. In particular, we estimate BKT temperatures between 75 K and 100 K on realistic substrates, over an order of magnitude larger than in the number-conserving approximation where $s$-wave pairing is favored. Our results highlight the interplay between topology at the single-particle level and long-range interactions, motivating further research in systems where both phenomena coexist.
Related papers
- Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction [0.6086160084025234]
Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems.
We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes.
arXiv Detail & Related papers (2024-11-25T13:10:53Z) - Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds [3.893862886864584]
We infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations.
Specifically in $87$Sr, we study an intrinsic F"orster resonance, unique to divalent atoms with hyperfine-split thresholds.
We provide parameters for pair states that can be effectively described by single-channel Rydberg series.
arXiv Detail & Related papers (2024-07-31T23:24:58Z) - Managing Temperature in Open Quantum Systems Strongly Coupled with Structured Environments [0.0]
We show how to reach either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials (T-TEDOPA) formalism in Hilbert space.
arXiv Detail & Related papers (2024-06-19T13:00:26Z) - Bardeen-Cooper-Schrieffer interaction as an infinite-range Penson-Kolb pairing mechanism [0.0]
We show that the well-known $(kuparrow, -kdownarrow)$ Bardeen-Cooper-Schrieffer interaction, when considered in real space, is equivalent to an infinite-range Penson-Kolb pairing mechanism.
We investigate the dynamics of fermionic particles confined in a ring-shaped lattice.
arXiv Detail & Related papers (2024-01-30T10:29:46Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - A first-principles calculation of electron-phonon interactions for the
$\text{C}_2\text{C}_\text{N}$ and $\text{V}_\text{N}\text{N}_\text{B}$
defects in hexagonal boron nitride [52.77024349608834]
Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest.
Recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature.
arXiv Detail & Related papers (2022-07-28T23:31:38Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Theory of Superconductivity Mediated by Topological Phonons [0.0]
Topological phononic insulators are the counterpart of three-dimensional quantum spin Hall insulators in phononic systems.
We propose a theoretical framework for the possible superconducting phase in these materials.
We show that the superconducting critical temperature has a non-monotonic behaviour with respect to the phononic frequency in the Kramers-like point.
arXiv Detail & Related papers (2022-03-07T16:24:07Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.