Uniting Quantum Processing Nodes of Cavity-coupled Ions with Rare-earth Quantum Repeaters Using Single-photon Pulse Shaping Based on Atomic Frequency Comb
- URL: http://arxiv.org/abs/2501.18704v1
- Date: Thu, 30 Jan 2025 19:02:34 GMT
- Title: Uniting Quantum Processing Nodes of Cavity-coupled Ions with Rare-earth Quantum Repeaters Using Single-photon Pulse Shaping Based on Atomic Frequency Comb
- Authors: P. Cussenot, B. Grivet, B. P. Lanyon, T. E. Northup, H. de Riedmatten, A. S. Sørensen, N. Sangouard,
- Abstract summary: We present an architecture for remotely connecting cavity-coupled trapped ions via a quantum repeater based on rare-earth-doped crystals.
Our approach is to modify a commonly used memory protocol, called atomic frequency comb, for systems exhibiting inhomogeneous broadening like rare-earth-doped crystals.
- Score: 0.0
- License:
- Abstract: We present an architecture for remotely connecting cavity-coupled trapped ions via a quantum repeater based on rare-earth-doped crystals. The main challenge for its realization lies in interfacing these two physical platforms, which produce photons with a typical temporal mismatch of one or two orders of magnitude. To address this, we propose an efficient protocol that enables custom temporal reshaping of single-photon pulses whilst preserving purity. Our approach is to modify a commonly used memory protocol, called atomic frequency comb, for systems exhibiting inhomogeneous broadening like rare-earth-doped crystals. Our results offer a viable solution for uniting quantum processing nodes with a quantum repeater backbone.
Related papers
- Heralded entanglement of on-demand spin-wave solid-state quantum memories for multiplexed quantum network links [0.0]
We show telecom heralded entanglement between spatially separated quantum memories with fully adjustable recall time and temporal multiplexing of 15 modes.
Results establish our architecture as a prime candidate for the implementation of scalable high-rate quantum network links.
arXiv Detail & Related papers (2025-01-07T20:26:06Z) - One-Way Quantum Repeater with Rare-Earth-Ions Doped in Solids [0.0]
One-way quantum repeaters eliminate the need for two-way classical communications.
Rare-earth-ions doped in solids and coupled with nano-cavity can be used to generate photonic cluster state efficiently.
arXiv Detail & Related papers (2024-04-13T21:08:18Z) - Scalable Multipartite Entanglement of Remote Rare-earth Ion Qubits [3.9514210525254785]
Single photon emitters with internal spin are leading contenders for developing quantum repeater networks.
We introduce a scalable approach to quantum networking that utilizes frequency erasing photon detection and real-time quantum control.
Our results provide a practical route to overcoming universal limitations imposed by non-uniformity and instability in solid-state emitters.
arXiv Detail & Related papers (2024-02-25T23:55:29Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - A faithful solid-state spin-wave quantum memory for polarization qubits [1.5729386263718377]
Storage of polarization-encoded qubits is essential for the construction of large-scale quantum networks.
Here we demonstrate a faithful quantum memory for photonic polarization qubits using the noiseless photon echo protocol.
A process fidelity of 0.919(24) is obtained for the storage of qubits carried by single-photon-level coherent pulses.
arXiv Detail & Related papers (2022-04-13T11:35:19Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Real-time ghost imaging of Bell-nonlocal entanglement between a photon
and a quantum memory [0.0]
certification of entanglement from images acquired with single-photon camera can mitigate this issue.
We demonstrate this feature in a quantum memory operating in a real-time feedback mode.
arXiv Detail & Related papers (2021-02-23T17:15:01Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.