A faithful solid-state spin-wave quantum memory for polarization qubits
- URL: http://arxiv.org/abs/2204.06312v1
- Date: Wed, 13 Apr 2022 11:35:19 GMT
- Title: A faithful solid-state spin-wave quantum memory for polarization qubits
- Authors: Ming Jin, You-Zhi Ma, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo
- Abstract summary: Storage of polarization-encoded qubits is essential for the construction of large-scale quantum networks.
Here we demonstrate a faithful quantum memory for photonic polarization qubits using the noiseless photon echo protocol.
A process fidelity of 0.919(24) is obtained for the storage of qubits carried by single-photon-level coherent pulses.
- Score: 1.5729386263718377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Polarization-encoded qubits are particularly useful in quantum information
tasks due to the easy transportation in a single spatial and temporal mode, the
accurate qubit manipulation and the high robustness against decoherence.
Reliable storage of polarization-encoded qubits is essential for the
construction of large-scale quantum networks. Here we demonstrate a faithful
quantum memory for photonic polarization qubits using the noiseless photon echo
protocol implemented in a rare-earth-ion doped crystal (151Eu3+:Y2SiO5). Based
on a detailed spectroscopic investigation on the 151Eu3+ ions at the site 2 of
Y2SiO5 crystals, the qubit memory is implemented using a single piece of
crystal which provides a near-uniform absorption for two orthogonal
polarization states. A process fidelity of 0.919(24) is obtained for the
storage of qubits carried by single-photon-level coherent pulses, which is
beyond the maximal fidelity that can be achieved using the classical
measure-and-prepare strategy. This compact device shall provide a useful
solution for the construction of a long-lived transportable quantum memory and
the memory-based quantum networks.
Related papers
- Broadband biphoton generation and polarization splitting in a monolithic
AlGaAs chip [0.0]
On-chip generation and handling of polarized photon pairs is a central challenge for the development of quantum photonics circuits.
Here, we demonstrate a monolithic AlGaAs chip including the generation of broadband orthogonally polarized photon pairs and their polarization splitting.
The quality of the two-photon interference at the chip output is assessed via a Hong-Ou-Mandel experiment displaying a visibility of 75.5 % over the same bandwidth.
arXiv Detail & Related papers (2022-08-30T09:44:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - On-demand Integrated Quantum Memory for Polarization Qubits [4.571248528325431]
Photonic polarization qubits are widely used in quantum computation and quantum communication.
An integrated quantum memory for polarization qubits is a fundamental building block for large-scale integrated quantum networks.
Here we demonstrate a reliable on-demand quantum memory for polarization qubits, using a depressed-cladding waveguide fabricated in a 151Eu3+: Y2SiO5 crystal.
arXiv Detail & Related papers (2022-01-10T23:17:22Z) - Optical Entanglement of Distinguishable Quantum Emitters [0.0]
We propose and demonstrate an efficient method for entangling emitters with optical transitions separated by many linewidths.
In our approach, electro-optic modulators enable a single photon to herald a parity measurement on a pair of spin qubits.
Working with distinguishable emitters allows for individual qubit addressing and readout, enabling parallel control and entanglement of both co-located and spatially separated emitters.
arXiv Detail & Related papers (2021-08-24T19:37:08Z) - Multidimensional cluster states using a single spin-photon interface
coupled strongly to an intrinsic nuclear register [48.7576911714538]
Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication.
We propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register.
arXiv Detail & Related papers (2021-04-26T14:41:01Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Hybrid quantum photonics based on artificial atoms placed inside one
hole of a photonic crystal cavity [47.187609203210705]
Hybrid quantum photonics with SiV$-$-containing nanodiamonds inside one hole of a one-dimensional, free-standing, Si$_3$N$_4$-based photonic crystal cavity is presented.
The resulting photon flux is increased by more than a factor of 14 as compared to free-space.
Results mark an important step to realize quantum network nodes based on hybrid quantum photonics with SiV$-$- center in nanodiamonds.
arXiv Detail & Related papers (2020-12-21T17:22:25Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Electron shelving of a superconducting artificial atom [0.0]
We demonstrate a conditional fluorescence readout of fluxonium qubit placed inside a matched one-dimensional waveguide.
Cycling the non-computational transition between ground and third excited states produces a microwave photon every 91 ns conditioned on the qubit ground state.
The readout has a built-in quantum non-demolition property, allowing over 100 fluorescence cycles in agreement with a four-level optical pumping model.
arXiv Detail & Related papers (2020-08-06T01:50:09Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.