論文の概要: Full-Head Segmentation of MRI with Abnormal Brain Anatomy: Model and Data Release
- arxiv url: http://arxiv.org/abs/2501.18716v1
- Date: Thu, 30 Jan 2025 19:31:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:30.977421
- Title: Full-Head Segmentation of MRI with Abnormal Brain Anatomy: Model and Data Release
- Title(参考訳): 異常脳解剖をともなうMRIのフルヘッドセグメンテーション : モデルとデータ公開
- Authors: Andrew M Birnbaum, Adam Buchwald, Peter Turkeltaub, Adam Jacks, Yu Huang, Abhisheck Datta, Lucas C Parra, Lukas A Hirsch,
- Abstract要約: さまざまな被験者を対象に,ボリュームセグメンテーションラベルを用いた91個のMRI画像を収集した。
我々は3つの2次元U-NetモデルからなるMultiAxial Networkを開発した。
非脳構造を含む61の臨床MRIとトレーニングラベルのデータセットとともに、頭部MRIセグメントの最先端モデルをリリースする。
- 参考スコア(独自算出の注目度): 1.738379704680519
- License:
- Abstract: The goal of this work was to develop a deep network for whole-head segmentation, including clinical MRIs with abnormal anatomy, and compile the first public benchmark dataset for this purpose. We collected 91 MRIs with volumetric segmentation labels for a diverse set of human subjects (4 normal, 32 traumatic brain injuries, and 57 strokes). These clinical cases are characterized by extended cerebrospinal fluid (CSF) in regions normally containing the brain. Training labels were generated by manually correcting initial automated segmentations for skin/scalp, skull, CSF, gray matter, white matter, air cavity, and extracephalic air. We developed a MultiAxial network consisting of three 2D U-Net models that operate independently in sagittal, axial, and coronal planes and are then combined to produce a single 3D segmentation. The MultiAxial network achieved test-set Dice scores of 0.88 (median plus-minus 0.04). For brain tissue, it significantly outperforms existing brain segmentation methods (MultiAxial: 0.898 plus-minus 0.041, SynthSeg: 0.758 plus-minus 0.054, BrainChop: 0.757 plus-minus 0.125). The MultiAxial network gains in robustness by avoiding the need for coregistration with an atlas. It performed well in regions with abnormal anatomy and on images that have been de-identified. It enables more robust current flow modeling when incorporated into ROAST, a widely-used modeling toolbox for transcranial electric stimulation. We are releasing a state-of-the-art model for whole-head MRI segmentation, along with a dataset of 61 clinical MRIs and training labels, including non-brain structures. Together, the model and data may serve as a benchmark for future efforts.
- Abstract(参考訳): この研究の目的は、異常な解剖を伴う臨床MRIを含む全頭分割のためのディープネットワークを開発し、この目的のために最初の公開ベンチマークデータセットをコンパイルすることであった。
健常者4名,外傷性脳損傷32名,脳卒中57名)を対象に,ボリュームセグメンテーションラベルを用いた91個のMRI画像を収集した。
これらの臨床例は、通常脳を含む領域で拡張脳脊髄液(CSF)を特徴とする。
トレーニングラベルは、スキン/スカルプ、頭蓋骨、CSF、グレーマター、白物、空洞、頭蓋外空気の初期自動セグメンテーションを手動で修正することで生成される。
我々は,3つの2次元U-NetモデルからなるMultiAxialネットワークを開発した。
MultiAxialネットワークはテストセットDiceスコア0.88(中間プラスマイナス0.04)を達成した。
脳組織では、既存の脳セグメンテーション法(MultiAxial:0.898 +-minus 0.041、SynthSeg:0.758 +-minus 0.054、BrainChop:0.757 plus-minus 0.125)を著しく上回っている。
MultiAxialネットワークは、アトラスとのコアグスタレーションを回避して堅牢性を得る。
異常解剖領域や鑑別画像では良好であった。
これは、経頭蓋電気刺激のための広く使われているモデリングツールボックスであるROASTに組み込まれた場合、より堅牢な電流流れモデリングを可能にする。
非脳構造を含む61の臨床MRIとトレーニングラベルのデータセットとともに、頭部MRIセグメントの最先端モデルをリリースする。
モデルとデータは共に、将来の取り組みのベンチマークとして機能する可能性がある。
関連論文リスト
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
公開されている注釈付きデータセットの欠如は、堅牢で機械学習駆動のセグメンテーションアルゴリズムの開発を妨げている。
SMILE-UHURAチャレンジは、7T MRIで取得したTime-of-Flightアンジオグラフィーの注釈付きデータセットを提供することで、公開されている注釈付きデータセットのギャップに対処する。
Diceスコアは、それぞれのデータセットで0.838 $pm$0.066と0.716 $pm$ 0.125まで到達し、平均パフォーマンスは0.804 $pm$ 0.15までになった。
論文 参考訳(メタデータ) (2024-11-14T17:06:00Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
このモデルは、英国バイオバンクの1200個の手動3D軸MRIスキャン、221個の社内MRIスキャン、1228個のCTスキャンでトレーニングされた。
明確な臓器(肺: DSC 0.96, 心臓: DSC 0.94)と解剖学的変化のある臓器(皮膚: DSC 0.96, 腎臓: DSC 0.95)に対して高い精度を示す。
CTとよく似ており、AMOS CTデータではDSC平均0.84$pm$ 0.11となる。
論文 参考訳(メタデータ) (2024-05-10T13:15:42Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
グリオーマにおけるIsocitrate dehydrogenase変異と1p/19q符号欠失は重要な予後マーカーである。
我々の目標は、MRIからこれらの分子変化を非侵襲的に決定する人工知能ベースの手法を開発することであった。
2.5Dハイブリッド畳み込みニューラルネットワークは、腫瘍を同時に局在させ、その分子状態を分類するために提案された。
論文 参考訳(メタデータ) (2022-10-07T18:46:39Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Fully Automated and Standardized Segmentation of Adipose Tissue
Compartments by Deep Learning in Three-dimensional Whole-body MRI of
Epidemiological Cohort Studies [11.706960468832301]
全身MR画像から異なる脂肪組織成分の定量化と局在化が,代謝状態の解明に重要である。
本稿では,頑健で客観的なセグメンテーションを実現するために,3次元畳み込みニューラルネットワーク(DCNet)を提案する。
高速(5-7秒)かつ信頼性の高い脂肪組織セグメンテーションを高Dice重なりで得ることができる。
論文 参考訳(メタデータ) (2020-08-05T17:30:14Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
19,993症例から36,316巻の胸部CTデータセットを収集,解析した。
自由テキストラジオグラフィーレポートから異常ラベルを自動的に抽出するルールベース手法を開発した。
胸部CTボリュームの多臓器・多臓器分類モデルも開発した。
論文 参考訳(メタデータ) (2020-02-12T00:59:23Z) - Handling Missing MRI Input Data in Deep Learning Segmentation of Brain
Metastases: A Multi-Center Study [1.4463443378902883]
深層学習に基づくDropOutと呼ばれる脳転移の自動セグメンテーションのためのセグメンテーションモデルが、マルチシーケンスMRIで訓練された。
セグメンテーションの結果は、最先端のDeepLabV3モデルの性能と比較された。
DropOutモデルはDeepLabV3モデルに比べてかなり高いスコアを示した。
論文 参考訳(メタデータ) (2019-12-27T02:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。