Full-Head Segmentation of MRI with Abnormal Brain Anatomy: Model and Data Release
- URL: http://arxiv.org/abs/2501.18716v1
- Date: Thu, 30 Jan 2025 19:31:13 GMT
- Title: Full-Head Segmentation of MRI with Abnormal Brain Anatomy: Model and Data Release
- Authors: Andrew M Birnbaum, Adam Buchwald, Peter Turkeltaub, Adam Jacks, Yu Huang, Abhisheck Datta, Lucas C Parra, Lukas A Hirsch,
- Abstract summary: We collected 91 MRIs with volumetric segmentation labels for a diverse set of human subjects.
We developed a MultiAxial network consisting of three 2D U-Net models that operate independently in sagittal, axial, and coronal planes.
We are releasing a state-of-the-art model for whole-head MRI segmentation, along with a dataset of 61 clinical MRIs and training labels, including non-brain structures.
- Score: 1.738379704680519
- License:
- Abstract: The goal of this work was to develop a deep network for whole-head segmentation, including clinical MRIs with abnormal anatomy, and compile the first public benchmark dataset for this purpose. We collected 91 MRIs with volumetric segmentation labels for a diverse set of human subjects (4 normal, 32 traumatic brain injuries, and 57 strokes). These clinical cases are characterized by extended cerebrospinal fluid (CSF) in regions normally containing the brain. Training labels were generated by manually correcting initial automated segmentations for skin/scalp, skull, CSF, gray matter, white matter, air cavity, and extracephalic air. We developed a MultiAxial network consisting of three 2D U-Net models that operate independently in sagittal, axial, and coronal planes and are then combined to produce a single 3D segmentation. The MultiAxial network achieved test-set Dice scores of 0.88 (median plus-minus 0.04). For brain tissue, it significantly outperforms existing brain segmentation methods (MultiAxial: 0.898 plus-minus 0.041, SynthSeg: 0.758 plus-minus 0.054, BrainChop: 0.757 plus-minus 0.125). The MultiAxial network gains in robustness by avoiding the need for coregistration with an atlas. It performed well in regions with abnormal anatomy and on images that have been de-identified. It enables more robust current flow modeling when incorporated into ROAST, a widely-used modeling toolbox for transcranial electric stimulation. We are releasing a state-of-the-art model for whole-head MRI segmentation, along with a dataset of 61 clinical MRIs and training labels, including non-brain structures. Together, the model and data may serve as a benchmark for future efforts.
Related papers
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans.
It demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95)
It generalized well to CT, achieving DSC mean of 0.84 $pm$ 0.11 on AMOS CT data.
arXiv Detail & Related papers (2024-05-10T13:15:42Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
Isocitrate dehydrogenase mutation and 1p/19q codeletion status are important prognostic markers for glioma.
Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI.
A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status.
arXiv Detail & Related papers (2022-10-07T18:46:39Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Fully Automated and Standardized Segmentation of Adipose Tissue
Compartments by Deep Learning in Three-dimensional Whole-body MRI of
Epidemiological Cohort Studies [11.706960468832301]
Quantification and localization of different adipose tissue compartments from whole-body MR images is of high interest to examine metabolic conditions.
We propose a 3D convolutional neural network (DCNet) to provide a robust and objective segmentation.
Fast (5-7seconds) and reliable adipose tissue segmentation can be obtained with high Dice overlap.
arXiv Detail & Related papers (2020-08-05T17:30:14Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients.
We developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports.
We also developed a model for multi-organ, multi-disease classification of chest CT volumes.
arXiv Detail & Related papers (2020-02-12T00:59:23Z) - Handling Missing MRI Input Data in Deep Learning Segmentation of Brain
Metastases: A Multi-Center Study [1.4463443378902883]
A deep learning based segmentation model for automatic segmentation of brain metastases, named DropOut, was trained on multi-sequence MRI.
The segmentation results were compared with the performance of a state-of-the-art DeepLabV3 model.
The DropOut model showed a significantly higher score compared to the DeepLabV3 model.
arXiv Detail & Related papers (2019-12-27T02:49:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.