論文の概要: Can We Predict the Effect of Prompts?
- arxiv url: http://arxiv.org/abs/2501.18883v1
- Date: Fri, 31 Jan 2025 04:34:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:03:45.253980
- Title: Can We Predict the Effect of Prompts?
- Title(参考訳): プロンプトの効果を予測できますか?
- Authors: Jae Yong Lee, Sungmin Kang, Shin Yoo,
- Abstract要約: 大規模言語モデル(LLM)は、以前困難なタスクを扱う能力のために広く採用されている機械学習モデルである。
我々は、自動手法がプロンプトを素早く分析する「予測的プロンプト解析」が有用であると論じている。
SPA(Syntactic Prevalence Analyzer)を提案する。これはスパースオートエンコーダ(SAE)に基づく予測的プロンプト分析手法である。
- 参考スコア(独自算出の注目度): 18.90591503793723
- License:
- Abstract: Large Language Models (LLMs) are machine learning models that have seen widespread adoption due to their capability of handling previously difficult tasks. LLMs, due to their training, are sensitive to how exactly a question is presented, also known as prompting. However, prompting well is challenging, as it has been difficult to uncover principles behind prompting -- generally, trial-and-error is the most common way of improving prompts, despite its significant computational cost. In this context, we argue it would be useful to perform `predictive prompt analysis', in which an automated technique would perform a quick analysis of a prompt and predict how the LLM would react to it, relative to a goal provided by the user. As a demonstration of the concept, we present Syntactic Prevalence Analyzer (SPA), a predictive prompt analysis approach based on sparse autoencoders (SAEs). SPA accurately predicted how often an LLM would generate target syntactic structures during code synthesis, with up to 0.994 Pearson correlation between the predicted and actual prevalence of the target structure. At the same time, SPA requires only 0.4\% of the time it takes to run the LLM on a benchmark. As LLMs are increasingly used during and integrated into modern software development, our proposed predictive prompt analysis concept has the potential to significantly ease the use of LLMs for both practitioners and researchers.
- Abstract(参考訳): 大規模言語モデル(LLM)は、以前困難なタスクを扱う能力のために広く採用されている機械学習モデルである。
LLMは、トレーニングのため、どのように質問が提示されるかに敏感であり、プロンプトとしても知られている。
一般的に、試行錯誤は、計算コストがかなり高いにもかかわらず、プロンプトを改善する最も一般的な方法です。
この文脈では、自動手法がプロンプトの迅速な解析を行い、ユーザが提供する目標に対してLDMがどう反応するかを予測する「予測的プロンプト解析」を行うのが有用である。
この概念の実証として,スパースオートエンコーダ(SAE)に基づく予測的迅速分析手法であるSPA(Syntactic Prevalence Analyzer)を提案する。
SPAは、LLMがコード合成中にターゲット構文構造を生成する頻度を正確に予測した。
同時に、SPAはベンチマークでLSMを実行するのに要する時間のわずか0.4 %しか必要としない。
LLMは現代のソフトウェア開発においてますます使われ、統合されつつあるので、我々の提案する予測的素早い分析概念は、実践者と研究者の両方にとってLLMの使用を著しく緩和する可能性がある。
関連論文リスト
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト is Key" (CiK) は、数値データを多種多様なテキストコンテキストと組み合わせた予測ベンチマークである。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
提案手法は,提案するベンチマークにおいて,他の試験手法よりも優れる簡易かつ効果的なLCMプロンプト法である。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - LLM Processes: Numerical Predictive Distributions Conditioned on Natural Language [35.84181171987974]
我々のゴールは、数値データを処理し、任意の場所で確率的予測を行うレグレッションモデルを構築することである。
まず、大規模言語モデルから明示的で一貫性のある数値予測分布を抽出する戦略を探求する。
本研究では,テキストを数値予測に組み込む能力を示し,予測性能を改善し,定性的な記述を反映した定量的な構造を与える。
論文 参考訳(メタデータ) (2024-05-21T15:13:12Z) - Is Your LLM Outdated? Evaluating LLMs at Temporal Generalization [37.58752947129519]
LLM(Large Language Models)の急速な進歩は、評価方法論の進化に対する緊急の必要性を浮き彫りにしている。
しばしば静的な従来のベンチマークでは、絶えず変化する情報ランドスケープをキャプチャできない。
本研究では,過去,現在,未来に関連するテキストを理解し,予測し,生成する能力を含む時間的一般化について検討する。
論文 参考訳(メタデータ) (2024-05-14T09:31:31Z) - Mitigating Catastrophic Forgetting in Large Language Models with Self-Synthesized Rehearsal [49.24054920683246]
大規模言語モデル(LLM)は、連続学習中に破滅的な忘れ込みに悩まされる。
自己合成リハーサル(Self-Synthesized Rehearsal, SSR)と呼ばれるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-02T16:11:23Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
本稿では,コード用大規模言語モデルに特有の説明可能性手法であるASTxplainerを紹介する。
その中核にあるASTxplainerは、トークン予測をASTノードに整合させる自動メソッドを提供する。
私たちは、最も人気のあるGitHubプロジェクトのキュレートデータセットを使用して、コード用の12の人気のあるLLMに対して、実証的な評価を行います。
論文 参考訳(メタデータ) (2023-08-07T18:50:57Z) - Assessing Hidden Risks of LLMs: An Empirical Study on Robustness,
Consistency, and Credibility [37.682136465784254]
我々は、ChatGPT、LLaMA、OPTを含む、主流の大規模言語モデル(LLM)に100万以上のクエリを実行します。
入力が極端に汚染された場合でも、ChatGPTは正しい答えを得ることができる。
そこで本研究では,LCMによる評価において,そのようなデータの有効性を大まかに決定する新たな指標を提案する。
論文 参考訳(メタデータ) (2023-05-15T15:44:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。