On the application of a Silicon photomultiplier-based receiver for binary phase-shift-keying protocols
- URL: http://arxiv.org/abs/2501.19008v1
- Date: Fri, 31 Jan 2025 10:20:15 GMT
- Title: On the application of a Silicon photomultiplier-based receiver for binary phase-shift-keying protocols
- Authors: Silvia Cassina, Michele N. Notarnicola, Stefano Olivares, Alessia Allevi,
- Abstract summary: In this work, we consider a %communication quantum channel exploiting a hybrid receiver embedding Silicon photomultipliers as photon-number-resolving detectors.
We retrieve the discrimination error probability and the mutual information between sender and receiver as functions of some relevant experimental parameters.
- Score: 0.0
- License:
- Abstract: Over the past decade, binary phase-shift keying %communication encoding has been used as a benchmark to test the performance of different detection strategies to address the problem of state discrimination. In this context, hybrid devices, giving access to both particle- and wave-like properties of light, could offer the possibility to better discriminate the sent signals. In this work, we consider a %communication quantum channel exploiting a hybrid receiver embedding Silicon photomultipliers as photon-number-resolving detectors. We retrieve the discrimination error probability and the mutual information between sender and receiver as functions of some relevant experimental parameters in the case of binary phase-shifted coherent states. Our promising results, supported also with numerical simulations and theoretical analysis, foster further using this kind of hybrid receiver in more complex detections schemes.
Related papers
- Assessing a binary quantum channel exploiting a Silicon photomultiplier based hybrid receiver [0.0]
We consider a quantum channel exploiting a Silicon-photomultiplier-based receiver.
We investigate two scenarios: information transmission over the channel, quantified by the mutual information, and continuous-variable quantum key distribution.
arXiv Detail & Related papers (2024-07-10T09:52:04Z) - Discriminating the Phase of a Coherent Tone with a Flux-Switchable
Superconducting Circuit [50.591267188664666]
We propose a new phase detection technique based on a flux-switchable superconducting circuit.
The Josephson digital phase detector (JDPD) is capable of discriminating between two phase values of a coherent input tone.
arXiv Detail & Related papers (2023-06-20T08:09:37Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Hybrid near-optimum binary receiver with realistic
photon-number-resolving detectors [0.0]
We propose a near-optimum receiver for the discrimination of binary phase-shift-keyed coherent states using photon-number-resolving detectors.
We show that the present hybrid setup is near-optimum and beats both the standard-quantum-limit and the performance of the Kennedy receiver.
arXiv Detail & Related papers (2022-07-15T15:04:53Z) - Frequency multiplexed entanglement for continuous-variable quantum key
distribution [0.0]
Quantum key distribution with continuous variables already uses advantageous high-speed single-mode homodyne detection with low electronic noise at room temperature.
The distance for secure key transmission through lossy channels can approach 300 km in current optical fibers.
We demonstrate the positive outcome of this methodology on the experimentally characterized frequency-multiplexed entangled source of femtosecond optical pulses.
arXiv Detail & Related papers (2021-10-27T15:18:16Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Fock state interferometry for quantum enhanced phase discrimination [1.0828616610785522]
We study Fock state interferometry, consisting of a Mach-Zehnder Interferometer with two Fock state inputs and photon-number-resolved detection at the two outputs.
We show that it allows discrimination of a discrete number of apriori-known optical phase shifts with an error probability lower than what is feasible with classical techniques under a mean photon number constraint.
We describe one application to quantum reading with binary phase-encoded memory pixels.
arXiv Detail & Related papers (2021-02-10T23:17:21Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Towards Integrating True Random Number Generation in Coherent Optical
Transceivers [0.0]
Commercial coherent transceiver sub-systems can support quantum random number generation next to classical data transmission.
Time-interleaved random number generation is demonstrated for 10 Gbaud polarization-multiplexed quadrature phase shift keyed data transmission.
arXiv Detail & Related papers (2020-07-20T15:50:10Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.