Discriminating the Phase of a Coherent Tone with a Flux-Switchable
Superconducting Circuit
- URL: http://arxiv.org/abs/2306.11364v1
- Date: Tue, 20 Jun 2023 08:09:37 GMT
- Title: Discriminating the Phase of a Coherent Tone with a Flux-Switchable
Superconducting Circuit
- Authors: Luigi Di Palma, Alessandro Miano, Pasquale Mastrovito, Davide
Massarotti, Marco Arzeo, Giovanni Piero Pepe, Francesco Tafuri and Oleg A.
Mukhanov
- Abstract summary: We propose a new phase detection technique based on a flux-switchable superconducting circuit.
The Josephson digital phase detector (JDPD) is capable of discriminating between two phase values of a coherent input tone.
- Score: 50.591267188664666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new phase detection technique based on a flux-switchable
superconducting circuit, the Josephson digital phase detector (JDPD), which is
capable of discriminating between two phase values of a coherent input tone.
When properly excited by an external flux, the JDPD is able to switch from a
single-minimum to a double-minima potential and, consequently, relax in one of
the two stable configurations depending on the phase sign of the input tone.
The result of this operation is digitally encoded in the occupation probability
of a phase particle in either of the two JDPD wells. In this work, we
demonstrate the working principle of the JDPD up to a frequency of 400 MHz with
a remarkable agreement with theoretical expectations. As a future scenario, we
discuss the implementation of this technique to superconducting qubit readout.
We also examine the JDPD compatibility with the single-flux-quantum
architecture, employed to fast-drive and measure the device state.
Related papers
- Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs)
We propose that the quantum capacitance arising in electronic two-level systems can provide an alternative dissipation-less non-linear element for parametric amplification.
We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8GHz superconducting lumped-element microwave cavity.
arXiv Detail & Related papers (2021-11-23T12:40:47Z) - Enhancement of microwave squeezing via parametric down-conversion in a
superconducting quantum circuit [3.2090709550735097]
We propose an experimentally accessible superconducting quantum circuit, consisting of two coplanar waveguide resonators (CWRs)
In our scheme, the two CWRs are nonlinearly coupled through a superconducting quantum interference device embedded in one of the CWRs.
arXiv Detail & Related papers (2021-04-20T12:43:34Z) - Epitaxial Superconductor-Semiconductor Two-Dimensional Systems for
Superconducting Quantum Circuits [0.0]
Materials innovation and design breakthroughs have increased functionality and coherence of qubits substantially over the past two decades.
We show by improving interface between InAs as a semiconductor and Al as a superconductor, one can reliably fabricate voltage-controlled Josephson junction field effect transistor (JJ-FET)
We present the anharmonicity and coupling strengths from one and two-photon absorption in a quantum two level system fabricated with a JJ-FET.
arXiv Detail & Related papers (2021-03-26T19:09:59Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Towards Integrating True Random Number Generation in Coherent Optical
Transceivers [0.0]
Commercial coherent transceiver sub-systems can support quantum random number generation next to classical data transmission.
Time-interleaved random number generation is demonstrated for 10 Gbaud polarization-multiplexed quadrature phase shift keyed data transmission.
arXiv Detail & Related papers (2020-07-20T15:50:10Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.