論文の概要: Beyond Token Compression: A Training-Free Reduction Framework for Efficient Visual Processing in MLLMs
- arxiv url: http://arxiv.org/abs/2501.19036v1
- Date: Fri, 31 Jan 2025 11:09:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 22:46:12.981374
- Title: Beyond Token Compression: A Training-Free Reduction Framework for Efficient Visual Processing in MLLMs
- Title(参考訳): Beyond Token Compression: MLLMにおける効率的なビジュアル処理のためのトレーニング不要のリダクションフレームワーク
- Authors: Hongliang Li, Jiaxin Zhang, Wenhui Liao, Dezhi Peng, Kai Ding, Lianwen Jin,
- Abstract要約: MLLM(Multimodal Large Language Model)は通常、デコーダのみまたはクロスアテンションアーキテクチャに基づいている。
視覚トークンに対する大規模な自己アテンションとFFN操作により、計算資源が大幅に高くなる。
本稿では,デコーダのみのMLLMにおいて,これらのコストのかかる操作の必要性を調査するための新しい分析フレームワークを提案する。
- 参考スコア(独自算出の注目度): 38.34856927170692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) are typically based on decoder-only or cross-attention architectures. While decoder-only MLLMs outperform their cross-attention counterparts, they require significantly higher computational resources due to extensive self-attention and FFN operations on visual tokens. This raises the question: can we eliminate these expensive operations while maintaining the performance? To this end, we present a novel analysis framework to investigate the necessity of these costly operations in decoder-only MLLMs. Our framework introduces two key innovations: (1) Hollow Attention, which limits visual token interactions to local attention while maintaining visual-text associations, and (2) Probe-Activated Dynamic FFN, which selectively activates FFN parameters for visual tokens. Both methods do not require fine-tuning, which significantly enhances analysis efficiency. To assess the impact of applying these reductions across different proportions of layers, we developed a greedy search method that significantly narrows the search space. Experiments on state-of-the-art MLLMs reveal that applying our reductions to approximately half of the layers not only maintains but sometimes improves model performance, indicating significant computational redundancy in current architectures. Additionally, our method is orthogonal to existing token compression techniques, allowing for further combination to achieve greater computational reduction. Our findings may provide valuable insights for the design of more efficient future MLLMs. Our code will be publicly available at https://github.com/L-Hugh/Beyond-Token-Compression.
- Abstract(参考訳): MLLM(Multimodal Large Language Model)は通常、デコーダのみまたはクロスアテンションアーキテクチャに基づいている。
デコーダのみのMLLMは、クロスアテンションよりも優れているが、視覚トークンに対する大規模な自己アテンションとFFN操作のために、計算資源が大幅に高い。
パフォーマンスを維持しながら、これらの高価な操作を排除できるだろうか?
そこで本研究では,デコーダのみのMLLMにおいて,これらのコストのかかる操作の必要性を調査するための新しい分析フレームワークを提案する。
本フレームワークでは,(1)視覚・テキスト関連性を保ちながら視覚トークンのインタラクションを局所的注意に限定するHollow Attention,(2)視覚トークンのFFNパラメータを選択的に活性化するProbe-Activated Dynamic FFNという2つの重要なイノベーションを紹介している。
どちらの手法も微調整は必要とせず、解析効率を大幅に向上させる。
そこで我々は,これらの削減効果を異なる層にまたがって評価するために,探索空間を著しく狭める欲求探索法を開発した。
最先端のMLLMの実験では、約半分の層に還元を施すことでモデル性能が向上し、現在のアーキテクチャにおける計算冗長性が顕著であることが示されている。
さらに,本手法は既存のトークン圧縮技術と直交しており,さらなる組み合わせにより計算量を削減することができる。
本研究は,より効率的なMLLMの設計に有用な知見を提供する可能性がある。
私たちのコードはhttps://github.com/L-Hugh/Beyond-Token-Compression.comで公開されます。
関連論文リスト
- DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
視覚言語モデル(VLM)の計算負担を軽減する,効率的なトレーニング不要なフレームワークであるDyMUを提案する。
まず、動的トークンマージ(DToMe)は、画像の複雑さに基づいて類似のトークンをマージすることで、視覚トークンの埋め込み数を削減します。
第二に、仮想トークンアンマージ(VTU)は、大きな言語モデル(LLM)の期待トークンシーケンスを、フルシーケンスの注意ダイナミクスを効率的に再構築することでシミュレートする。
論文 参考訳(メタデータ) (2025-04-23T18:38:18Z) - Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping [13.846838416902575]
重要なボトルネックは、きめ細かい画像理解に必要な視覚トークンの拡散に起因する。
視覚言語モデルにおけるトレーニングと推論の非効率性に対処する統合フレームワークであるSkip-Visionを提案する。
実験の結果,Skip-Visionはトレーニング時間を最大35%短縮し,FLOPを75%,レイテンシを45%短縮した。
論文 参考訳(メタデータ) (2025-03-26T04:16:48Z) - DiffCLIP: Differential Attention Meets CLIP [57.396578974401734]
本稿では,CLIPアーキテクチャに差分アテンション機構を拡張する新しい視覚言語モデルであるDiffCLIPを提案する。
最小限の追加パラメータで、DiffCLIPは画像テキスト理解タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-03-09T14:04:09Z) - Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement [50.93686436282772]
我々は、視覚的品質と計算効率の両方から、画像エンハンサーの限界を掘り下げることを目指している。
タスク要求を再考することにより、視覚的品質と計算効率がモデル学習と構造設計に対応する、明示的な接続を構築する。
最終的には、単一の畳み込み層のみを使用して、優れた視覚的品質を維持しながら、効率的な低照度画像強調を実現する。
論文 参考訳(メタデータ) (2025-02-27T08:20:03Z) - Compression with Global Guidance: Towards Training-free High-Resolution MLLMs Acceleration [28.311125014789905]
マルチモーダルな大言語モデル(MLLM)は、視覚的コンテンツ理解と推論における例外的な性能から注目されている。
視覚トークンの数を減らしたトークン圧縮技術は,計算コストの削減に有効であることを示した。
本稿では,高分解能MLLMに適した新しいトークン圧縮手法,GlobalCom$2$を提案する。
論文 参考訳(メタデータ) (2025-01-09T11:57:58Z) - FOLDER: Accelerating Multi-modal Large Language Models with Enhanced Performance [9.782362715017596]
視覚トークン列の長さを削減するために設計された,シンプルで効果的なプラグアンドプレイモジュールであるFOLDERを紹介する。
我々は、異なる還元戦略によってもたらされた情報損失を分析し、視覚的冗長性を取り除きながら鍵情報を保存するFOLDERを開発した。
FOLDERは、オリジナルのモデルと同等またはそれ以上のパフォーマンスを達成すると同時に、最大70%のビジュアルトークンを削除することで、複雑さを劇的に低減する。
論文 参考訳(メタデータ) (2025-01-05T03:28:45Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
MLLM(Multimodal Large Language Models)は、入力イメージを視覚トークンとしてエンコードし、それらを言語バックボーンに入力する。
画像解像度が大きくなるにつれて、視覚トークンの数は2次的に増加し、膨大な計算コストがかかる。
本稿では,各層を浅層から深層まで保持する最小限の視覚トークンを求めるために,欲求探索アルゴリズム(G-Search)を提案する。
論文 参考訳(メタデータ) (2024-11-30T18:54:32Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
視覚言語モデル(VLM)は、様々な視覚的理解と推論タスクにまたがる強力な能力を示している。
VLMは、大量の入力トークンを処理するのに必要な計算量が多いため、推論中に高いレイテンシで制約されることが多い。
高いトークン圧縮設定に適したアプローチを構築するために、最初のステップを踏み出します。
論文 参考訳(メタデータ) (2024-11-05T18:54:21Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - PAR: Prompt-Aware Token Reduction Method for Efficient Large Multimodal Models [32.33892531885448]
MLLM(Multimodal large language model)は、視覚的タスクにまたがる強力なパフォーマンスを示す。
しかし、それらの効率は、マルチモーダル入力で長いコンテキストを処理することによる計算とメモリの要求によって妨げられている。
PAR(Prompt-Aware Token Reduction)は,モデルの性能を損なうことなく,視覚トークンを効率よく削減する新しい,プラグアンドプレイ方式である。
論文 参考訳(メタデータ) (2024-10-09T07:13:22Z) - Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See [37.7015406019386]
MLLM(Multimodal Large Language Models)は、視覚エンコーダからの視覚トークンをテキストトークンとして扱う。
トークンの数が増加するにつれて、LLMにおける計算の2次スケーリングは効率のボトルネックをもたらす。
本研究では,LLaVAにおけるパラメータと計算パターンの両レベルでの視覚計算の冗長性について検討する。
論文 参考訳(メタデータ) (2024-10-08T16:13:24Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Balancing Performance and Efficiency: A Multimodal Large Language Model Pruning Method based Image Text Interaction [6.467840081978855]
マルチモーダル大規模言語モデル(MM-LLM)は多くのマルチモーダルタスクにおいて大きな成功を収めているが、その高い計算コストはさらなる促進と応用を制限している。
MM-LLMの視覚的トークンについて検討し,この問題に対処するための動的プルーニングアルゴリズムを設計した。
提案手法は,平均22%のトークン量を使用する場合,元のトークン量と競合する性能を実現する。
論文 参考訳(メタデータ) (2024-09-02T10:49:10Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な要素である。
LLMは、非効率な注意分布のため、複雑な推論タスクに苦しむことが多い。
本稿では,アテンション機構の最適化を利用して,計算トークンをChain-of-Thoughtプロセスで拡張する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-22T03:23:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。