Reinforcement Learning on Reconfigurable Hardware: Overcoming Material Variability in Laser Material Processing
- URL: http://arxiv.org/abs/2501.19102v1
- Date: Fri, 31 Jan 2025 12:51:55 GMT
- Title: Reinforcement Learning on Reconfigurable Hardware: Overcoming Material Variability in Laser Material Processing
- Authors: Giulio Masinelli, Chang Rajani, Patrik Hoffmann, Kilian Wasmer, David Atienza,
- Abstract summary: We propose a novel real-time reinforcement learning approach for laser process control, implemented on a Field Programmable Gate Array to achieve real-time execution.
Specifically, the algorithm learned the correct power profile for each unique surface characteristic, demonstrating significant improvements over hand-engineered optimal constant power strategies.
This approach represents a significant advancement in automating and optimizing laser processes, with potential applications across multiple industries.
- Score: 3.958366734801974
- License:
- Abstract: Ensuring consistent processing quality is challenging in laser processes due to varying material properties and surface conditions. Although some approaches have shown promise in solving this problem via automation, they often rely on predetermined targets or are limited to simulated environments. To address these shortcomings, we propose a novel real-time reinforcement learning approach for laser process control, implemented on a Field Programmable Gate Array to achieve real-time execution. Our experimental results from laser welding tests on stainless steel samples with a range of surface roughnesses validated the method's ability to adapt autonomously, without relying on reward engineering or prior setup information. Specifically, the algorithm learned the correct power profile for each unique surface characteristic, demonstrating significant improvements over hand-engineered optimal constant power strategies -- up to 23% better performance on rougher surfaces and 7% on mixed surfaces. This approach represents a significant advancement in automating and optimizing laser processes, with potential applications across multiple industries.
Related papers
- Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything [7.188573079798082]
We construct a framework for image segmentation using a state-of-the-art Vision Transformer (ViT) based Foundation model.
We obtain high accuracy without using any labeled data to guide the prompt tuning process.
We envision constructing a real-time anomaly detection pipeline that could revolutionize current laser additive manufacturing processes.
arXiv Detail & Related papers (2023-12-07T06:03:07Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - Predicting Surface Texture in Steel Manufacturing at Speed [81.90215579427463]
Control of the surface texture of steel strip during the galvanizing and temper rolling processes is essential to satisfy customer requirements.
We propose the use of machine learning to improve accuracy of the transformation from inline laser reflection measurements to a prediction of surface properties.
arXiv Detail & Related papers (2023-01-20T12:11:03Z) - Degradation Prediction of Semiconductor Lasers using Conditional
Variational Autoencoder [0.0]
We propose a new data-driven approach to predict the degradation trend without requiring any specific knowledge or using any physical model.
The proposed approach is based on an unsupervised technique, a conditional variational autoencoder, and validated using vertical-cavity surface-emitting laser (VCSEL) and tunable edge emitting laser reliability data.
The experimental results confirm that our model (i) achieves a good degradation prediction and generalization performance by yielding an F1 score of 95.3%, (ii) outperforms several baseline ML based anomaly detection techniques, and (iii) helps to shorten the aging tests by early predicting the failed devices
arXiv Detail & Related papers (2022-11-05T08:10:11Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Machine Learning-Driven Process of Alumina Ceramics Laser Machining [0.0]
An intelligent strategy is to employ machine learning (ML) techniques to capture the relationship between picosecond laser machining parameters.
Laser parameters such as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, are used for predicting the depth, top width, and bottom width of the engraved channels.
Neural Networks (NN) are the most efficient in predicting the outputs.
arXiv Detail & Related papers (2022-06-13T22:35:14Z) - Constrained multi-objective optimization of process design parameters in
settings with scarce data: an application to adhesive bonding [48.7576911714538]
Finding the optimal process parameters for an adhesive bonding process is challenging.
Traditional evolutionary approaches (such as genetic algorithms) are then ill-suited to solve the problem.
In this research, we successfully applied specific machine learning techniques to emulate the objective and constraint functions.
arXiv Detail & Related papers (2021-12-16T10:14:39Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.