論文の概要: Hierarchical Cryptographic Signature Mapping for Ransomware Classification: A Structural Decomposition Approach
- arxiv url: http://arxiv.org/abs/2501.19120v1
- Date: Fri, 31 Jan 2025 13:23:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:57:36.343934
- Title: Hierarchical Cryptographic Signature Mapping for Ransomware Classification: A Structural Decomposition Approach
- Title(参考訳): ランサムウェア分類のための階層型暗号署名マッピング:構造分解アプローチ
- Authors: Dominic Abernethy, Nathaniel Weatherstone, Tristan Ravensdale, Lafedi Svet,
- Abstract要約: 構造暗号特性を分析するために設計された階層型分類フレームワークは、悪意のある暗号化を識別するための新しいアプローチを提供する。
本研究は,暗号的特徴マッピングによって分類精度が向上することを示す。
階層構造解析は、さらに法医学的な調査を強化し、セキュリティアナリストが暗号を解読して攻撃源を追跡できるようにする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Encryption-based cyber threats continue to evolve, leveraging increasingly sophisticated cryptographic techniques to evade detection and persist within compromised systems. A hierarchical classification framework designed to analyze structural cryptographic properties provides a novel approach to distinguishing malicious encryption from legitimate cryptographic operations. By systematically decomposing encryption workflows into hierarchical layers, the classification method enhances the ability to recognize distinct patterns across diverse threat variants, reducing the dependence on predefined signatures that often fail against rapidly mutating threats. The study examines how cryptographic feature mapping facilitates improved classification accuracy, highlighting the role of entropy, key exchange mechanisms, and algorithmic dependencies in distinguishing harmful encryption activities. Through experimental validation, the framework demonstrated a high degree of precision across multiple attack families, outperforming conventional classification techniques while maintaining computational efficiency suitable for large-scale cybersecurity applications. The layered structural analysis further enhances forensic investigations, enabling security analysts to dissect encryption workflows to trace attack origins and identify commonalities across different campaigns. The methodology strengthens proactive threat mitigation efforts, offering a scalable and adaptable solution that accounts for both known and emerging encryption-based cyber threats. Comparative evaluations illustrate the advantages of structural decomposition in mitigating false positives and negatives, reinforcing the reliability of cryptographic signature classification in real-world security environments.
- Abstract(参考訳): 暗号化ベースのサイバー脅威は進化を続けており、高度な暗号化技術を活用して検出を回避し、漏洩したシステム内で持続する。
構造暗号特性を分析するために設計された階層型分類フレームワークは、悪意のある暗号化と正統な暗号操作を区別する新しいアプローチを提供する。
暗号化ワークフローを階層的な層に体系的に分解することにより、分類手法は様々な脅威のバリエーションにまたがる異なるパターンを認識する能力を高め、しばしば急速に変更される脅威に対して失敗する事前定義されたシグネチャへの依存を減らす。
本研究は,暗号機能マッピングによって分類精度が向上し,エントロピー,鍵交換機構,および有害な暗号化活動の識別におけるアルゴリズム依存の役割を強調した。
実験的な検証を通じて、このフレームワークは複数の攻撃ファミリーで高い精度を示し、大規模サイバーセキュリティアプリケーションに適した計算効率を維持しながら、従来の分類技術より優れている。
階層構造解析により、法医学的な調査がさらに強化され、セキュリティアナリストは暗号化ワークフローを識別して攻撃の起点を追跡し、さまざまなキャンペーンの共通点を特定することができる。
この手法はプロアクティブな脅威軽減努力を強化し、既知の暗号ベースのサイバー脅威と新興の暗号化ベースのサイバー脅威の両方を考慮に入れたスケーラブルで適応可能なソリューションを提供する。
比較評価は、現実のセキュリティ環境での暗号署名分類の信頼性を高めるために、偽陽性と否定を緩和する構造的分解の利点を示す。
関連論文リスト
- Hierarchical Entropy Disruption for Ransomware Detection: A Computationally-Driven Framework [0.0]
エントロピー変動のモニタリングは、不正なデータ修正を識別するための代替アプローチを提供する。
階層的エントロピー破壊を利用したフレームワークを導入し,エントロピー分布の偏差を解析した。
複数のランサムウェアにまたがるフレームワークの評価は、高い検出精度を達成する能力を示した。
論文 参考訳(メタデータ) (2025-02-12T23:29:06Z) - Hierarchical Manifold Projection for Ransomware Detection: A Novel Geometric Approach to Identifying Malicious Encryption Patterns [0.0]
暗号化ベースのサイバー脅威は進化を続けており、従来の検出メカニズムをバイパスする技術がますます高度化している。
階層的多様体射影によって構成された新しい分類フレームワークは、悪意のある暗号化を検出する数学的アプローチを導入する。
提案手法は,暗号シーケンスを構造化多様体の埋め込みに変換し,非ユークリッド特徴分離性による分類ロバスト性を確保する。
論文 参考訳(メタデータ) (2025-02-11T23:20:58Z) - Hierarchical Entropic Diffusion for Ransomware Detection: A Probabilistic Approach to Behavioral Anomaly Isolation [0.0]
本稿では,構造的エントロピーに基づく異常分類機構を提案する。
エントロピーの進化の変動を追跡し、良質な暗号プロセスと不正な暗号化の試みを区別する。
さまざまなランサムウェアファミリーにまたがる高い分類精度を維持し、従来のベースとシグネチャ駆動のアプローチより優れている。
論文 参考訳(メタデータ) (2025-02-06T08:55:11Z) - Semantic Entanglement-Based Ransomware Detection via Probabilistic Latent Encryption Mapping [0.0]
Probabilistic Latent Encryption Mapping(英語版)は、エントロピー偏差と実行トレースにおける確率的依存関係の統計的表現による暗号化の振る舞いをモデル化する。
評価の結果、エントロピー駆動型分類は、様々なランサムウェアファミリーや暗号化手法で高い検出精度を維持しつつ、偽陽性率を低減することが示されている。
静的な攻撃シグネチャを必要とせずに、暗号化によって引き起こされる逸脱を体系的に推論する能力は、敵の回避技術に対する検出を強化する。
論文 参考訳(メタデータ) (2025-02-04T21:27:58Z) - Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints [0.0]
このフレームワークは、高度なクラスタリングアルゴリズムと機械学習を組み合わせて、ランサムウェアによる異常を分離する。
偽陽性率を低く保ちながら、悪意のある暗号化操作と良心的な活動とを効果的に区別する。
リアルタイム異常評価の導入により、ランサムウェア検出における致命的なレイテンシ問題に対処し、迅速な応答能力が保証される。
論文 参考訳(メタデータ) (2025-01-25T05:26:17Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
本稿では,SemCom に準同型暗号を適用する可能性について検討する。
タスク指向のSemComスキームを提案する。
論文 参考訳(メタデータ) (2025-01-17T13:26:14Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。