Learning While Repositioning in On-Demand Vehicle Sharing Networks
- URL: http://arxiv.org/abs/2501.19208v1
- Date: Fri, 31 Jan 2025 15:16:02 GMT
- Title: Learning While Repositioning in On-Demand Vehicle Sharing Networks
- Authors: Hansheng Jiang, Chunlin Sun, Zuo-Jun Max Shen, Shunan Jiang,
- Abstract summary: We consider a network inventory problem motivated by one-way, on-demand vehicle sharing services.
We show that a natural Lipschitz-bandit approach achieves a regret guarantee of $widetildeO(Tfracnn+1)$, which suffers from the exponential dependence on $n$.
Motivated by these challenges, we propose an Online Gradient Repositioning algorithm that relies solely on censored demand.
- Score: 4.724825031148413
- License:
- Abstract: We consider a network inventory problem motivated by one-way, on-demand vehicle sharing services. Due to uncertainties in both demand and returns, as well as a fixed number of rental units across an $n$-location network, the service provider must periodically reposition vehicles to match supply with demand spatially while minimizing costs. The optimal repositioning policy under a general $n$-location network is intractable without knowing the optimal value function. We introduce the best base-stock repositioning policy as a generalization of the classical inventory control policy to $n$ dimensions, and establish its asymptotic optimality in two distinct limiting regimes under general network structures. We present reformulations to efficiently compute this best base-stock policy in an offline setting with pre-collected data. In the online setting, we show that a natural Lipschitz-bandit approach achieves a regret guarantee of $\widetilde{O}(T^{\frac{n}{n+1}})$, which suffers from the exponential dependence on $n$. We illustrate the challenges of learning with censored data in networked systems through a regret lower bound analysis and by demonstrating the suboptimality of alternative algorithmic approaches. Motivated by these challenges, we propose an Online Gradient Repositioning algorithm that relies solely on censored demand. Under a mild cost-structure assumption, we prove that it attains an optimal regret of $O(n^{2.5} \sqrt{T})$, which matches the regret lower bound in $T$ and achieves only polynomial dependence on $n$. The key algorithmic innovation involves proposing surrogate costs to disentangle intertemporal dependencies and leveraging dual solutions to find the gradient of policy change. Numerical experiments demonstrate the effectiveness of our proposed methods.
Related papers
- Distributionally Robust Policy Learning under Concept Drifts [33.44768994272614]
This paper studies a more nuanced problem -- robust policy learning under the concept drift.
We first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy.
We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class.
arXiv Detail & Related papers (2024-12-18T19:53:56Z) - Efficient Methods for Non-stationary Online Learning [61.63338724659592]
We present efficient methods for optimizing dynamic regret and adaptive regret, which reduce the number of projections per round from $mathcalO(log T)$ to $1$.
We also study an even strengthened measure, namely the interval dynamic regret'', and reduce the number of projections per round from $mathcalO(log2 T)$ to $1$.
arXiv Detail & Related papers (2023-09-16T07:30:12Z) - Iterative Reweighted Least Squares Networks With Convergence Guarantees
for Solving Inverse Imaging Problems [12.487990897680422]
We present a novel optimization strategy for image reconstruction tasks under analysis-based image regularization.
We parameterize such regularizers using potential functions that correspond to weighted extensions of the $ell_pp$-vector and $mathcalS_pp$ Schatten-matrix quasi-norms.
We show that thanks to the convergence guarantees of our proposed minimization strategy, such optimization can be successfully performed with a memory-efficient implicit back-propagation scheme.
arXiv Detail & Related papers (2023-08-10T17:59:46Z) - Cooperative Thresholded Lasso for Sparse Linear Bandit [6.52540785559241]
We present a novel approach to address the multi-agent sparse contextual linear bandit problem.
It is first algorithm that tackles row-wise distributed data in sparse linear bandits.
It is widely applicable to high-dimensional multi-agent problems where efficient feature extraction is critical for minimizing regret.
arXiv Detail & Related papers (2023-05-30T16:05:44Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
Existing primal-dual algorithms for constrained online learning problems rely on two fundamental assumptions.
We show how such assumptions can be circumvented by endowing standard primal-dual templates with weakly adaptive regret minimizers.
We prove the first best-of-both-worlds no-regret guarantees which hold in absence of the two aforementioned assumptions.
arXiv Detail & Related papers (2023-02-02T16:30:33Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - Globally Convergent Policy Search over Dynamic Filters for Output
Estimation [64.90951294952094]
We introduce the first direct policy search algorithm convex which converges to the globally optimal $textitdynamic$ filter.
We show that informativity overcomes the aforementioned degeneracy.
arXiv Detail & Related papers (2022-02-23T18:06:20Z) - Online Allocation with Two-sided Resource Constraints [44.5635910908944]
We consider an online allocation problem subject to lower and upper resource constraints, where the requests arrive sequentially.
We propose a new algorithm that obtains $1-O(fracepsilonalpha-epsilon)$ -competitive ratio for the offline problems that know the entire requests ahead of time.
arXiv Detail & Related papers (2021-12-28T02:21:06Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Online Stochastic Optimization with Wasserstein Based Non-stationarity [12.91020811577007]
We consider a general online optimization problem with multiple budget constraints over a horizon of finite time periods.
The objective of the decision maker is to maximize the cumulative reward subject to the budget constraints.
This formulation captures a wide range of applications including online linear programming and network revenue management.
arXiv Detail & Related papers (2020-12-13T04:47:37Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.