論文の概要: VeloxQ: A Fast and Efficient QUBO Solver
- arxiv url: http://arxiv.org/abs/2501.19221v1
- Date: Fri, 31 Jan 2025 15:27:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 13:58:27.002959
- Title: VeloxQ: A Fast and Efficient QUBO Solver
- Title(参考訳): VeloxQ: 高速で効率的なQUBOソルバー
- Authors: J. Pawłowski, J. Tuziemski, P. Tarasiuk, A. Przybysz, R. Adamski, K. Hendzel, Ł. Pawela, B. Gardas,
- Abstract要約: VeloxQは擬似非制約二項最適化問題の高速かつ効率的な解法である。
VeloxQを最新技術に基づく最先端のQUBOソルバに対してベンチマークする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We introduce VeloxQ, a fast and efficient solver for Quadratic Unconstrained Binary Optimization (QUBO) problems, which are central to numerous real-world optimization tasks. Unlike other physics-inspired approaches to optimization problems, such as quantum annealing and quantum computing, VeloxQ does not require substantial progress of technology to unlock its full potential. We benchmark VeloxQ against the state-of-the-art QUBO solvers based on emerging technologies. Our comparison includes quantum annealers, specifically D-Wave's Advantage, and Advantage2 prototype platforms, the digital-quantum algorithm designed to solve Higher-Order Unconstrained Binary Optimization (HUBO) developed by Kipu Quantum, physics-inspired algorithms: Simulated Bifurcation and Parallel Annealing and an algorithm based on tropical tensor networks. We also take into account modern developments of conventional algorithms: Branch and Bound algorithm, an optimal implementation of the brute-force algorithm and BEIT QUBO solver. Our results show that VeloxQ not only matches but often surpasses the mentioned solvers in solution quality and runtime. Additionally, VeloxQ demonstrates excellent scalability being the only solver capable of solving large-scale optimization problems, including up to $2\times 10^{8}$ sparsely connected variables, that are currently intractable for its competitors. These findings position VeloxQ as a powerful and practical tool for tackling large-scale QUBO and HUBO problems, offering a compelling alternative to existing quantum and classical optimization methods.
- Abstract(参考訳): 本稿では, 擬似非拘束バイナリ最適化(QUBO)問題の高速かつ効率的な解法であるVeloxQを紹介する。
量子アニールや量子コンピューティングなど、他の物理学に端を発する最適化問題に対するアプローチとは異なり、VeloxQはその完全なポテンシャルを解き明かすためにテクノロジーのかなりの進歩を必要としない。
VeloxQを最新技術に基づく最先端のQUBOソルバに対してベンチマークする。
我々の比較には、量子アニーラ、特にD-WaveのアドバンテージとAdvantage2のプロトタイププラットフォーム、キプ量子によって開発された高次非制約バイナリ最適化(HUBO)を解くために設計されたデジタル量子アルゴリズム、物理に着想を得たアルゴリズム、シミュレートビフレーションとパラレルアニーラリング、熱帯テンソルネットワークに基づくアルゴリズムが含まれる。
また,従来のアルゴリズムであるブランチ・アンド・バウンドアルゴリズム,ブルートフォースアルゴリズムの最適実装,BEIT QUBOソルバを考慮に入れた。
以上の結果から,VeloxQ はソリューションの品質と実行時の解決法に適合するだけでなく,しばしば上述の解決法を上回ります。
さらに、VeloxQは、大規模な最適化問題を解決することができる唯一の解法である優れたスケーラビリティを実証している。
これらの知見は、VeloxQを大規模QUBOとHUBOの問題に対処するための強力で実用的なツールとして位置づけ、既存の量子および古典的な最適化手法に代わる魅力的な代替手段を提供する。
関連論文リスト
- Tensor Network Based HOBO Solver [0.0]
提案した解法は、定式化の観点から将来の拡張に有意義な可能性を持つ有望なツールである。
この解法は、量子コンピューティングにおける幅広い応用の有望な可能性を持っている。
論文 参考訳(メタデータ) (2024-07-23T00:33:34Z) - Qubit efficient quantum algorithms for the vehicle routing problem on
NISQ processors [48.68474702382697]
時間窓付き車両ルーティング問題(VRPTW)は、ロジスティクス業界で直面する一般的な最適化問題である。
そこで本研究では,以前に導入した量子ビット符号化方式を用いて,バイナリ変数の数を削減した。
論文 参考訳(メタデータ) (2023-06-14T13:44:35Z) - Quantum-Inspired Optimization over Permutation Groups [0.2294014185517203]
量子インスパイアされた最適化 (QIO) アルゴリズムは、量子力学的効果を古典的なハードウェアにエミュレートする計算手法である。
我々は、任意の最適化問題を解決するためにQIOツールをカスタマイズするアルゴリズムフレームワークPerm-QIOを開発した。
論文 参考訳(メタデータ) (2022-12-06T00:02:39Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Analysis of The Vehicle Routing Problem Solved via Hybrid Quantum
Algorithms in Presence of Noisy Channels [0.0]
目的は、最適な効率で一定数の顧客に商品を届けるための車両のルートを計画することである。
固定アンサッツ上の変分量子固有解法を用いて,3都市と4都市を対象とした基本的VRP解法を構築した。
量子アルゴリズムの性能は、どのノイズモデルが使われているかに大きく依存している。
論文 参考訳(メタデータ) (2022-05-13T11:29:12Z) - Analysis of Vehicle Routing Problem in Presence of Noisy Channels [0.0]
車両ルーティング問題(VRP)はNPハード最適化問題である。
この研究は、変数 ANSATZ 上の変分量子固有解法を用いて、3 と 4 の都市に基本的な VRP ソリューションを構築する。
論文 参考訳(メタデータ) (2021-12-28T10:20:42Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
最小限のフォールトトレラント量子コンピュータで試すのに、最適化のための量子アルゴリズムが最も実用的であるかを探る。
この結果から,2次高速化のみを実現する量子最適化が,古典的アルゴリズムよりも有利であるという考えが否定される。
論文 参考訳(メタデータ) (2020-07-14T22:54:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。