Entanglement and Stabilizer entropies of random bipartite pure quantum states
- URL: http://arxiv.org/abs/2501.19261v2
- Date: Mon, 10 Feb 2025 14:34:14 GMT
- Title: Entanglement and Stabilizer entropies of random bipartite pure quantum states
- Authors: Daniele Iannotti, Gianluca Esposito, Lorenzo Campos Venuti, Alioscia Hamma,
- Abstract summary: We show that while there is a strong dependence between entanglement and magic, they are, surprisingly, perfectly uncorrelated.
At a first approximation, entanglement determines the average magic on the Schmidt orbit.
However, there is a finer structure in the average magic distinguishing different orbits where the flatness of entanglement spectrum is involved.
- Score: 0.0
- License:
- Abstract: The interplay between non-stabilizerness and entanglement in random states is a very rich arena of study for the understanding of quantum advantage and complexity. In this work, we tackle the problem of such interplay in random pure quantum states. We show that while there is a strong dependence between entanglement and magic, they are, surprisingly, perfectly uncorrelated. We compute the expectation value of non-stabilizerness given the Schmidt spectrum (and thus entanglement). At a first approximation, entanglement determines the average magic on the Schmidt orbit. However, there is a finer structure in the average magic distinguishing different orbits where the flatness of entanglement spectrum is involved.
Related papers
- Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)
We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Momentum space magic for the transverse field quantum Ising model [0.0]
We investigate the momentum-space structure of Pauli strings and stabilizer entropies in the one-dimensional transverse-field quantum Ising model.
All ferromagnetic states possess the same degree of magic in the thermodynamic limit, while stabilizer entropies are non-analytic at the critical point and vanish with increasing transverse field.
The momentum-space approach to quantum magic not only complements its real-space counterpart but also provides advantages in terms of analyzing nonstabilizerness and classical simulability.
arXiv Detail & Related papers (2024-12-18T07:21:27Z) - Expressibility, entangling power and quantum average causal effect for causally indefinite circuits [37.69303106863453]
We implement parameterized quantum circuits with definite and indefinite causal order.
One of these is the expressibility, which measures how uniformly a given quantum circuit can reach the whole Hilbert space.
We find a correlation between the quantum average causal effect and the entangling power.
arXiv Detail & Related papers (2024-11-13T13:53:02Z) - A New Framework for Quantum Phases in Open Systems: Steady State of Imaginary-Time Lindbladian Evolution [18.47824812164327]
We introduce the concept of imaginary-time Lindbladian evolution as an alternative framework.
This new approach defines gapped quantum phases in open systems through the spectrum properties of the imaginary-Liouville superoperator.
arXiv Detail & Related papers (2024-08-06T14:53:40Z) - Critical behaviors of non-stabilizerness in quantum spin chains [0.0]
Non-stabilizerness measures the extent to which a quantum state deviates from stabilizer states.
In this work, we investigate the behavior of non-stabilizerness around criticality in quantum spin chains.
arXiv Detail & Related papers (2023-09-01T18:00:04Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - Quantifying non-stabilizerness through entanglement spectrum flatness [0.0]
We establish a direct connection between non-stabilizerness and entanglement spectrum flatness for a pure quantum state.
We show that this connection can be exploited to efficiently probe non-stabilizerness even in presence of noise.
Our results reveal a direct connection between non-stabilizerness and entanglement response, and define a clear experimental protocol to probe non-stabilizerness in cold atom and solid-state platforms.
arXiv Detail & Related papers (2023-04-03T17:44:37Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Transitions in Entanglement Complexity in Random Circuits [0.0]
We numerically show how a crossover from a simple pattern of entanglement to a universal, complex pattern can be driven by doping a random Clifford circuit with $T$ gates.
This work shows that quantum complexity and complex entanglement stem from the conjunction of entanglement and non-stabilizer resources, also known as magic.
arXiv Detail & Related papers (2022-02-05T22:30:24Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.