Geometric Analysis of the Stabilizer Polytope for Few-Qubit Systems
- URL: http://arxiv.org/abs/2504.12518v1
- Date: Wed, 16 Apr 2025 22:34:52 GMT
- Title: Geometric Analysis of the Stabilizer Polytope for Few-Qubit Systems
- Authors: Alberto B. P. Junior, Santiago Zamora, Rafael A. MacĂȘdo, Tailan S. Sarubi, Joab M. Varela, Gabriel W. C. Rocha, Darlan A. Moreira, Rafael Chaves,
- Abstract summary: We investigate the geometry of the stabilizer polytope in few-qubit quantum systems.<n>By randomly sampling quantum states, we analyze the distribution of magic for both pure and mixed states.<n>We classify Bell-like inequalities corresponding to the facets of the stabilizer polytope and establish a general concentration result connecting magic and entanglement.
- Score: 0.3613661942047476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-stabilizerness, or magic, is a fundamental resource for quantum computational advantage, differentiating classically simulatable circuits from those capable of universal quantum computation. In this work, we investigate the geometry of the stabilizer polytope in few-qubit quantum systems, using the trace distance to the stabilizer set to quantify magic. By randomly sampling quantum states, we analyze the distribution of magic for both pure and mixed states and compare the trace distance with other magic measures, as well as entanglement. Additionally, we classify Bell-like inequalities corresponding to the facets of the stabilizer polytope and establish a general concentration result connecting magic and entanglement via Fannes' inequality. Our findings provide new insights into the geometric structure of magic and its role in small-scale quantum systems, offering a deeper understanding of the interplay between quantum resources.
Related papers
- Magic spreading in random quantum circuits [0.0]
We show how rapidly do generic many-body dynamics generate magic resources under the constraints of locality and unitarity.<n>We demonstrate that magic resources equilibrate on timescales logarithmic in the system size, akin to anti-concentration and Hilbert space delocalization phenomena.<n>As random circuits are minimal models for chaotic dynamics, we conjecture that our findings describe the phenomenology of magic resources growth in a broad class of chaotic many-body systems.
arXiv Detail & Related papers (2024-07-04T13:43:46Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Entanglement-magic separation in hybrid quantum circuits [0.0]
We study magic, quantified by stabilizer entropy, in a hybrid quantum circuit with projective measurements.
We discover a phase transition between a (sub)-extensive and area law scaling of magic controlled by the rate of measurements.
arXiv Detail & Related papers (2023-12-04T16:57:33Z) - Measuring nonstabilizerness via multifractal flatness [0.0]
Universal quantum computing requires nonstabilizer (magic) quantum states.
We prove that a quantum state is a stabilizer if and only if all states belonging to its Clifford orbit have a flat probability distribution.
We show that the multifractal flatness provides an experimentally and computationally viable nonstabilizerness certification.
arXiv Detail & Related papers (2023-05-19T16:32:59Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Scalable measures of magic resource for quantum computers [0.0]
We introduce efficient measures of magic resource for pure quantum states with a sampling cost independent of the number of qubits.
We show the transition of classically simulable stabilizer states into intractable quantum states on the IonQ quantum computer.
arXiv Detail & Related papers (2022-04-21T12:50:47Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
Variational quantum algorithms aim at harnessing the power of noisy intermediate-scale quantum computers.
We apply the variational quantum eigensolver to study the ground-state properties of $N$-component fermions.
Our approach lays out the basis for a current-based quantum simulator of many-body systems.
arXiv Detail & Related papers (2021-06-29T16:39:30Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Characterizing quantum correlations in spin chains [0.0]
We show that a single element of the density matrix carries the answer to how quantum is a chain of spins.
This method can be used to tailor and witness highly non-classical effects in many-body systems.
As a proof of principle, we investigate the extend of non-locality and entanglement in ground states and thermal states of experimentally accessible spin chains.
arXiv Detail & Related papers (2020-05-19T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.