Reverse Probing: Evaluating Knowledge Transfer via Finetuned Task Embeddings for Coreference Resolution
- URL: http://arxiv.org/abs/2501.19316v1
- Date: Fri, 31 Jan 2025 17:12:53 GMT
- Title: Reverse Probing: Evaluating Knowledge Transfer via Finetuned Task Embeddings for Coreference Resolution
- Authors: Tatiana Anikina, Arne Binder, David Harbecke, Stalin Varanasi, Leonhard Hennig, Simon Ostermann, Sebastian Möller, Josef van Genabith,
- Abstract summary: Instead of probing frozen representations from a complex source task, we explore the effectiveness of embeddings from multiple simple source tasks on a single target task.
Our findings reveal that task embeddings vary significantly in utility for coreference resolution, with semantic similarity tasks proving most beneficial.
- Score: 23.375053899418504
- License:
- Abstract: In this work, we reimagine classical probing to evaluate knowledge transfer from simple source to more complex target tasks. Instead of probing frozen representations from a complex source task on diverse simple target probing tasks (as usually done in probing), we explore the effectiveness of embeddings from multiple simple source tasks on a single target task. We select coreference resolution, a linguistically complex problem requiring contextual understanding, as focus target task, and test the usefulness of embeddings from comparably simpler tasks tasks such as paraphrase detection, named entity recognition, and relation extraction. Through systematic experiments, we evaluate the impact of individual and combined task embeddings. Our findings reveal that task embeddings vary significantly in utility for coreference resolution, with semantic similarity tasks (e.g., paraphrase detection) proving most beneficial. Additionally, representations from intermediate layers of fine-tuned models often outperform those from final layers. Combining embeddings from multiple tasks consistently improves performance, with attention-based aggregation yielding substantial gains. These insights shed light on relationships between task-specific representations and their adaptability to complex downstream tasks, encouraging further exploration of embedding-level task transfer.
Related papers
- Leverage Task Context for Object Affordance Ranking [57.59106517732223]
We build the first large-scale task-oriented affordance ranking dataset with 25 common tasks, over 50k images and more than 661k objects.
Results demonstrate the feasibility of the task context based affordance learning paradigm and the superiority of our model over state-of-the-art models in the fields of saliency ranking and multimodal object detection.
arXiv Detail & Related papers (2024-11-25T04:22:33Z) - Task-Driven Exploration: Decoupling and Inter-Task Feedback for Joint Moment Retrieval and Highlight Detection [7.864892339833315]
We propose a novel task-driven top-down framework for joint moment retrieval and highlight detection.
The framework introduces a task-decoupled unit to capture task-specific and common representations.
Comprehensive experiments and in-depth ablation studies on QVHighlights, TVSum, and Charades-STA datasets corroborate the effectiveness and flexibility of the proposed framework.
arXiv Detail & Related papers (2024-04-14T14:06:42Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning [14.677411619418319]
Auxiliary tasks facilitate learning in situations when data is scarce or the principal task of focus is extremely complex.
We propose a novel framework, dubbed Detaux, whereby a weakly supervised disentanglement procedure is used to discover a new unrelated auxiliary classification task.
We generate the auxiliary classification task through a clustering procedure on the most disentangled subspace, obtaining a discrete set of labels.
arXiv Detail & Related papers (2023-10-13T17:40:39Z) - Leveraging sparse and shared feature activations for disentangled
representation learning [112.22699167017471]
We propose to leverage knowledge extracted from a diversified set of supervised tasks to learn a common disentangled representation.
We validate our approach on six real world distribution shift benchmarks, and different data modalities.
arXiv Detail & Related papers (2023-04-17T01:33:24Z) - Identification of Negative Transfers in Multitask Learning Using
Surrogate Models [29.882265735630046]
Multitask learning is widely used to train a low-resource target task by augmenting it with multiple related source tasks.
A critical problem in multitask learning is identifying subsets of source tasks that would benefit the target task.
We introduce an efficient procedure to address this problem via surrogate modeling.
arXiv Detail & Related papers (2023-03-25T23:16:11Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.