論文の概要: The Value of Prediction in Identifying the Worst-Off
- arxiv url: http://arxiv.org/abs/2501.19334v1
- Date: Fri, 31 Jan 2025 17:34:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:04:04.084162
- Title: The Value of Prediction in Identifying the Worst-Off
- Title(参考訳): ワーストオフの同定における予測値
- Authors: Unai Fischer-Abaigar, Christoph Kern, Juan Carlos Perdomo,
- Abstract要約: 機械学習は、最も脆弱な個人を特定し、支援するために、政府のプログラムでますます使われている。
本研究は、株式駆動型文脈における予測の福祉的影響と、他の政策レバーとの比較について考察する。
- 参考スコア(独自算出の注目度): 3.468330970960535
- License:
- Abstract: Machine learning is increasingly used in government programs to identify and support the most vulnerable individuals, prioritizing assistance for those at greatest risk over optimizing aggregate outcomes. This paper examines the welfare impacts of prediction in equity-driven contexts, and how they compare to other policy levers, such as expanding bureaucratic capacity. Through mathematical models and a real-world case study on long-term unemployment amongst German residents, we develop a comprehensive understanding of the relative effectiveness of prediction in surfacing the worst-off. Our findings provide clear analytical frameworks and practical, data-driven tools that empower policymakers to make principled decisions when designing these systems.
- Abstract(参考訳): 機械学習は、最も脆弱な個人を特定し、支援するために、政府のプログラムでますます使われており、集計結果の最適化よりも最もリスクの高い人々への支援を優先している。
本稿は, 株式主導型文脈における予測の福祉的影響と, 官僚的能力の拡大など他の政策レバーとの比較について検討する。
ドイツ住民の長期失業に関する数学的モデルと実世界のケーススタディを通じて、最悪の事態に直面した予測の相対的有効性に関する包括的理解を深める。
これらのシステムの設計において、政策立案者が原則的な決定を下すための、明確な分析フレームワークと実践的なデータ駆動ツールを提供する。
関連論文リスト
- Achieving Fairness in Predictive Process Analytics via Adversarial Learning [50.31323204077591]
本稿では、デバイアスフェーズを予測ビジネスプロセス分析に組み込むことの課題に対処する。
本研究の枠組みは, 4つのケーススタディで検証し, 予測値に対する偏り変数の寄与を著しく低減することを示した。
論文 参考訳(メタデータ) (2024-10-03T15:56:03Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
エージェントが過去の正確性に基づいて予測を信頼するかを判断する集団リスクジレンマについて検討する。
予測が集合的な結果を形成するにつれて、社会福祉は関心の指標として自然に現れる。
よりよいトレードオフを実現し、それらをメカニズム設計に使用する方法を示します。
論文 参考訳(メタデータ) (2024-08-09T16:03:44Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - The Relative Value of Prediction in Algorithmic Decision Making [0.0]
アルゴリズムによる意思決定における予測の相対的な価値は何か?
我々は,拡張アクセスの相対値を決定する,単純でシャープな条件を同定する。
本稿では,これらの理論的洞察を用いて,アルゴリズムによる意思決定システムの設計を現実的に導く方法について述べる。
論文 参考訳(メタデータ) (2023-12-13T20:52:45Z) - Between accurate prediction and poor decision making: the AI/ML gap [0.19580473532948395]
本稿は、AI/MLコミュニティが、状態確率の推定に過剰な注意を払って、あまりにも不均衡なアプローチをとってきたことを論じる。
誤った効用評価が決定戦略の期待される実用性に与える影響についての証拠は少ない。
論文 参考訳(メタデータ) (2023-10-03T13:15:02Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
偏りのある人間の意思決定者を含めることで、アルゴリズムの構造と結果の判断の質との間の共通関係を逆転させることができることを示す。
実験室実験では,性別別情報による予測が,意思決定における平均的な性別格差を減少させることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:24:45Z) - The Impact of Algorithmic Risk Assessments on Human Predictions and its
Analysis via Crowdsourcing Studies [79.66833203975729]
我々は,在職者が将来の再起を予測することを任務とするヴィグネット研究を行う。
参加者は、再逮捕の確率が50%よりかなり低いと判断しても、犯罪者が再逮捕されることをしばしば予測します。
裁判官の判断は、参加者の予測とは異なり、部分的には再逮捕の可能性がある要因に依存する。
論文 参考訳(メタデータ) (2021-09-03T11:09:10Z) - Fairness in Algorithmic Profiling: A German Case Study [0.0]
本研究では、求職者の長期失業リスクを予測するための統計モデルを比較し、評価する。
これらのモデルは、競争力のある精度で長期失業を予測するために使用できることを示す。
異なる分類ポリシーは、非常に異なる公平性をもたらすことを強調する。
論文 参考訳(メタデータ) (2021-08-04T13:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。