論文の概要: PUATE: Semiparametric Efficient Average Treatment Effect Estimation from Treated (Positive) and Unlabeled Units
- arxiv url: http://arxiv.org/abs/2501.19345v1
- Date: Fri, 31 Jan 2025 17:47:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-03 14:02:26.243554
- Title: PUATE: Semiparametric Efficient Average Treatment Effect Estimation from Treated (Positive) and Unlabeled Units
- Title(参考訳): PUATE: 処理単位(陽性)と非標識単位の半パラメトリック平均処理効果の評価
- Authors: Masahiro Kato, Fumiaki Kozai, Ryo Inokuchi,
- Abstract要約: 本研究では、処理グループと未知のグループ構成ユニットのみを観測可能な環境で、ATE推定のための半パラメトリック効率的な推定器を開発する。
本研究は,欠落データと弱教師付き学習による因果推論に寄与する。
- 参考スコア(独自算出の注目度): 7.8856737627153874
- License:
- Abstract: The estimation of average treatment effects (ATEs), defined as the difference in expected outcomes between treatment and control groups, is a central topic in causal inference. This study develops semiparametric efficient estimators for ATE estimation in a setting where only a treatment group and an unknown group-comprising units for which it is unclear whether they received the treatment or control-are observable. This scenario represents a variant of learning from positive and unlabeled data (PU learning) and can be regarded as a special case of ATE estimation with missing data. For this setting, we derive semiparametric efficiency bounds, which provide lower bounds on the asymptotic variance of regular estimators. We then propose semiparametric efficient ATE estimators whose asymptotic variance aligns with these efficiency bounds. Our findings contribute to causal inference with missing data and weakly supervised learning.
- Abstract(参考訳): 平均治療効果(ATE)の推定は,治療群と対照群との予測結果の差として定義され,因果推論における中心的なトピックである。
本研究は、治療群と未知のグループ構成単位のみで、治療を受けたか制御可能かが不明な環境で、ATE推定のための半パラメトリック効率的な推定器を開発した。
このシナリオは、正およびラベルなしデータ(PU学習)からの学習の変種であり、欠落データによるATE推定の特別なケースとみなすことができる。
この設定のために、半パラメトリック効率境界を導出し、正則推定器の漸近的分散の低い境界を与える。
次に、これらの効率境界に漸近的分散が一致する半パラメトリック効率的なATE推定器を提案する。
本研究は,欠落データと弱教師付き学習による因果推論に寄与する。
関連論文リスト
- Causal machine learning for heterogeneous treatment effects in the presence of missing outcome data [0.9087641068861047]
条件付き平均治療効果(CATE)に対する因果的機械学習推定器に欠落した結果データが与える影響について論じる。
我々はCATE(mDR-learner)とmEP-learner(mEP-learner)の2つの非バイアス機械学習推定器を提案する。
論文 参考訳(メタデータ) (2024-12-27T16:10:03Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
共変量によって表現される情報のサブセットを調整可能なフレームワークを提案する。
理論的な結果に基づいて,平均処理効果(ATE)の効率的な評価を目的とした,デバイアスドアウトカム適応確率推定器(DOPE)を提案する。
その結果,DOPE は様々な観測環境において ATE 推定のための効率的かつ堅牢な手法を提供することがわかった。
論文 参考訳(メタデータ) (2024-02-20T13:02:51Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
本稿では,選択したサブセットに対して,結果に反する結果をもたらすモデルに依存しないデータ拡張手法を提案する。
我々は、比較学習を用いて表現空間と類似度尺度を学習し、学習された類似度尺度で同定された個人に近い学習空間において、同様の潜在的な結果が得られるようにした。
この性質は、代替治療群から近接した近縁者に対する対実的な結果の信頼性の高い計算を保証する。
論文 参考訳(メタデータ) (2023-11-07T00:36:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Estimating Conditional Average Treatment Effects with Missing Treatment
Information [20.83151214072516]
治療情報不足時に条件平均治療効果(CATE)を推定することは困難である。
本稿では,欠損治療によるCATE推定について分析する。
我々は,新しいCATE推定アルゴリズムであるMTRNetを開発した。
論文 参考訳(メタデータ) (2022-03-02T21:23:25Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
平均的な治療効果は社会福祉の変化を測定するため、たとえ肯定的であっても、人口の約10%に悪影響を及ぼすリスクがある。
本稿では,ICT分布のリスク条件値(CVaR)として定式化されたこの重要なリスク尺度をどう評価するかを検討する。
いくつかの境界は、複素CATE関数を単一の計量に要約したものと解釈することもでき、有界であることとは無関係に興味を持つ。
論文 参考訳(メタデータ) (2022-01-15T17:21:26Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
もっとも単純な設定であっても、無知性仮定に基づく推定は誤解を招く可能性があることを示す。
異種処理効果評価のための機械学習ベンチマークデータセットを2つ検討した。
ベンチマークデータセットの固有の特性が、他のものよりもいくつかのアルゴリズムを好んでいる点を強調します。
論文 参考訳(メタデータ) (2021-07-28T13:21:27Z) - Estimating Average Treatment Effects via Orthogonal Regularization [18.586616164230566]
従来の方法は根拠のない結果に基づいて成果を見積もるが、根拠のない結果に課されるいかなる制約も無視する。
非定常性を利用した平均治療効果を推定するための新しい正規化フレームワークを提案する。
我々はDONUTが最先端技術を大幅に上回っていることを実証する。
論文 参考訳(メタデータ) (2021-01-21T08:05:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。